DOI QR코드

DOI QR Code

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System

레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구

  • Kim, J.H. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jeong, M.Y. (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김준현 (부산대학교 인지메카트로닉스공학과) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2020.12.22
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

최근 고령화 사회가 진행이 되면서 건강과 진단에 대한 많은 관심이 증대되고 있다. 정확한 진단이 가능한 guided surgery를 위한 다양한 바이오 이미징 시스템 분야가 중요하게 대두되면서 정확한 측정과 실시간 확인 등이 가능한 형광 이미징 시스템이 중요한 분야로 대두되었다. 현재 사용되고 있는 부분은 NIR-I이 주를 이루고 있으나 분해능의 향상 및 깊고 정확하게 형광을 확인하기 위해서 NIR-II 부분의 연구를 많이 진행 중에 있다. 본 논문에서는 NIR-I과 NIR-II의 차이점과 광학적인 특성, 그리고 형광영상 시스템의 SBR(signal to background ration)에 대해서 NIR-II의 미(Mie) 산란을 유한요소(FEM)법을 이용하여 확인을 하였으며 최종적으로 Skin phantom을 제작 및 Fluorescence를 측정을 함으로써 SBR이 NIR-I보다 NIR-II 영역에서 16.2배 더 높은 것을 확인하였다. 형광 이미징 시스템의 SBR 증대는 NIR-I영역대 보다 NIR-II영역이 효과를 이룰 것으로 확인이 되며 이를 통해 guided surgery나 bio-sensor, 또한 형광을 이용한 전자부품의 결함을 확인할 수 있는 디바이스 등의 다양한 응용분야에 활용할 수 있을 것으로 예상한다.

Keywords

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries", CA: a cancer journal for clinicians, 68(6), 394 (2018). https://doi.org/10.3322/caac.21492
  2. D. Xu, F. Teng, Z. Wang, and N. Lu, "Droplet-confined electroless deposition of silver nanoparticles on ordered superhydrophobic structures for high uniform SERS measurements", ACS Applied Materials & Interfaces, 9(25), 21548 (2017). https://doi.org/10.1021/acsami.7b04240
  3. Q. X. Yang, J. Wang, J. Wang, C. M. Collins, C. Wang, and M. B. Smith, "Reducing SAR and enhancing cerebral signal?to?noise ratio with high permittivity padding at 3 T", Magnetic resonance in medicine, 65(2), 358 (2011). https://doi.org/10.1002/mrm.22695
  4. P. Beard, "Biomedical photoacoustic imaging", Interface focus, 1(4), 602 (2011). https://doi.org/10.1098/rsfs.2011.0028
  5. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy", Neuroimage, 23, S275 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.011
  6. T. Kim, K. H. Seo, H. K. Lee, and M. Y. Jeong, "Development and Packaging of Multi-channel Imaging Module for Near-infrared Fluorescence Imaging System", J. Microelectron. Packag. Soc, 26(2), 59 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0059
  7. T. Kim, C. O'Brien, H. S. Choi, and M. Y. Jeong, "Fluorescence molecular imaging systems for intraoperative imageguided surgery", Applied Spectroscopy Reviews, 53(2-4), 349 (2018). https://doi.org/10.1080/05704928.2017.1323311
  8. T. Kim, S. U. Cho, C. S. Park, H. G. Lee, D. I. Kim, and M. Y. Jeong, "A study on fluorescence imaging system characteristics depending on tilting of band pass filter", J. Microelectron. Packag. Soc, 23(2), 85 (2016). https://doi.org/10.6117/kmeps.2016.23.2.085
  9. L. Shi, L. A. Sordillo, A. Rodriguez?Contreras, and R. Alfano, "Transmission in near?infrared optical windows for deep brain imaging", Journal of biophotonics, 9(1-2), 38 (2016). https://doi.org/10.1002/jbio.201500192
  10. I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin", Applied optics, 34(31), 7410 (1995). https://doi.org/10.1364/AO.34.007410
  11. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, "Optical properties of melanin in the skin and skinlike phantoms", Proc. Controlling tissue optical properties: applications in clinical study, Amsterdam, Netherlands, 4162, 219, International Society for Optics and Photonics (2000).
  12. J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, and O. T. Bruns, "Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green", Proc. National Academy of Sciences (PNAS), 115(17), 4465, PNAS (2018). https://doi.org/10.1073/pnas.1718917115