Browse > Article
http://dx.doi.org/10.4313/JKEM.2009.22.4.307

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance  

Lee, Taek-Sung (한국과학기술연구원 박막재료연구센터)
Lee, Kyeong-Seok (한국과학기술연구원 박막재료연구센터)
Kim, Won-Mok (한국과학기술연구원 박막재료연구센터)
Lee, Jang-Kyo ((주)인사이드옵틱스)
Byun, Seok-Joo ((주)인사이드옵틱스)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.22, no.4, 2009 , pp. 307-313 More about this Journal
Abstract
Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.
Keywords
Bio-sensor; LSPR; Au nanoparticle; Evanescent coupling; FDTD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Fornel, 'Evanescent Waves', Springer-Verlag, p. 3, 2001
2 D. L. Feldheim and C. A. Foss, Jr., 'Metal Nanoparticles: Cynthesis, Characterization, and Applications', Marcel Dekker, Inc., p. 89, 2002
3 K. S. Lee and M. A. El-Sayed, 'Dependnece of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index', J. Phys. Chem. B, Vol. 109, No. 43, p. 20331, 2005   DOI   ScienceOn
4 G. R. Fowles, 'Introduction to Modern Optics', 2nd edition, Holt, Rinehart and Winston, p. 38, 1975
5 C. F. Bohren and D. R. Huffman, 'Absorption and Scattering of Light by Small Particles', John Wiley & Sons, Inc., p. 57, 1983
6 K. S. Lee and M. A. El-Sayed, 'Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition', J. Phys. Chem. B, Vol. 110, No. 39, p. 19220, 2006   DOI   ScienceOn
7 C. Sonnichsen, S. Geier, N. E. Hecker, V. Von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, 'Spectroscopy of single metallic nanoparticles using total internal reflection microscopy', Appl. Phys. Lett., Vol. 77, No. 19, p. 2949, 2000   DOI   ScienceOn
8 W. P. Hall, G. Hartland, R. Van Duyne, and G. Mentor, 'Single nanoparticle spectroscopy: An analysis of sample preparation and microscopy techniques', Nanoscape, Vol. 2, No. 1, p. 35, 2005
9 D. M. Sullivan, 'Electromagnetic Simulation Using the FDTD Method', IEEE Press, p. 1, 2000
10 C. Oubre and P. Nordlander, 'Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method', J. Phys. Chem. B, Vol. 108, No. 46, p. 17740, 2004   DOI   ScienceOn
11 L. J. Sherry, S. H. Chang, R. P. Van Duyne, B. J. Wiley, and Y. Xia, 'Localized surface plasmon resonance spectroscopy of single silver nanocubes', Nano Lett., Vol. 5, No. 10, p. 2034, 2005   DOI   ScienceOn
12 S. A. Love, B. J. Marquis, and C. L. Haynes, 'Recent advances in nanomaterial plasmonics: Fundamental studies and aplications', Appl. Spectroscopy, Vol. 62, No. 12, p. 346A, 2008   DOI   ScienceOn
13 A. Taflove and S. C. Hagness, 'Computational Electrodynamics: The Finite-Difference Time- Domain Method', Artech House, Inc., p. 353, 2005
14 E. D. Palik, 'Handbook of Optical Constants of Solids', Academic Press, Inc., p. 286, 1985
15 N. Nath and A. Chilkoti, 'Label free colorimetric biosensing using nanoparticles', J. Flouresence, Vol. 14, No. 4, p. 377, 2004   DOI   ScienceOn
16 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, 'Plasmonics - A route to nanoscale optical devices', Adv. Mater., Vol. 13, No. 19, p. 1501, 2001   DOI   ScienceOn
17 X. D. Hoa, A. G. Kirk, and M. Tabrizan, 'Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress', Biosensors and Bioelectronics, Vol. 23, p. 151, 2007   DOI   ScienceOn
18 K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing', Annu. Rev. Phys. Chem., Vol. 58, p. 267, 2007   DOI   ScienceOn
19 A. J. Haes and R. P. Van Duyne, 'A unified view of propagating and localized surface Plasmon resonance biosensors', Anal. Bioanal Chem., Vol. 379, p. 920, 2004   DOI   ScienceOn
20 J. J. Mock, M. Barbic, D. R. Smith, and D. A. Schultz, 'Shape effects in plasmon resonance of individual colloidal silver nanoparticles', J. Chem. Phys., Vol. 116, No. 15, p. 6755, 2002   DOI   ScienceOn