Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc

접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성

  • Kim, Jooyoung (Department of Physics, Sogang University) ;
  • Cho, Kyuman (Department of Physics, Sogang University) ;
  • Lee, Kyeong-Seok (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 김주영 (서강대학교 물리학과) ;
  • 조규만 (서강대학교 물리학과) ;
  • 이경석 (한국과학기술연구원 박막재료연구센터)
  • Received : 2008.05.19
  • Published : 2008.07.25

Abstract

Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. W. P. McConnell, J. P. Novak, L. C. Brousseau, III, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim, J. Phys. Chem. B 104, 8925 (2000) https://doi.org/10.1021/jp000926t
  2. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005) https://doi.org/10.1021/cr030063a
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, Germany (1995)
  4. A. P. Alivisatos, Nat. Biotechnol. 22, 47 (2004) https://doi.org/10.1038/nbt927
  5. D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks, and R. P. Van Duyne, IEE Proc.-Nanobiotechnol. 152, 13 (2005)
  6. E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004) https://doi.org/10.1002/adma.200400271
  7. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002) https://doi.org/10.1103/PhysRevLett.88.077402
  8. A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003) https://doi.org/10.1021/nl034372s
  9. D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003) https://doi.org/10.1016/S0958-1669(02)00015-0
  10. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 1087 (2003) https://doi.org/10.1021/nl034197f
  11. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, J. Vac. Sci. Technol. B 25, 2628 (2007) https://doi.org/10.1116/1.2794328
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003) https://doi.org/10.1021/jp026731y
  13. W. H. Yang, G. C. Schatz, and R. P. Van Duyne, J. Chem. Phys. 103, 869 (1995) https://doi.org/10.1063/1.469787
  14. B. T. Drain and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994) https://doi.org/10.1364/JOSAA.11.001491
  15. E. D. Palik, Handbook of Optical Constants, Academic Press, New York (1985)
  16. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006) https://doi.org/10.1021/jp0608628
  17. S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999) https://doi.org/10.1021/jp990183f
  18. K. H. Su, Q. H. Wei, and X. Zhang, Appl. Phys. Lett. 88, 063118 (2006) https://doi.org/10.1063/1.2172712
  19. K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B 109, 20331 (2005) https://doi.org/10.1021/jp054385p
  20. K. H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 1087 (2003) https://doi.org/10.1021/nl034197f
  21. R. J. Gehr and R. W. Boyd, Chem. Mater. 8, 1807 (1996) https://doi.org/10.1021/cm9600788
  22. M. S. Guzman, M. Hack, and G. Neubauer, IEEE Int. Reliab. Phys. Symp. Proc. 32th annual pp. 108 (San Jose, CA, 1994)
  23. M. J. Cordill, D. F. Bahr, N. R. Moody, and W. W. Gerberich, IEEE Trans. Dev. Mater. Reliab. 4, 163 (2004) https://doi.org/10.1109/TDMR.2004.829071