DOI QR코드

DOI QR Code

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho (Department of Mechanical Engineering, Korea University) ;
  • Kwon, Tae-Yun (Department of Biomedical Engineering, Yonsei University) ;
  • Sohn, Young-Soo (Department of Biomedical Engineering, Catholic University of Daegu)
  • Received : 2010.09.16
  • Accepted : 2010.10.15
  • Published : 2010.11.30

Abstract

Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

Keywords

References

  1. M. A. Cooper Edit., Label-free biosensors, Cambridge, New York, 2009.
  2. L. G. Carrascosa, M. Moreno, M. Alvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” Trac-Trends Anal. Chem., vol. 25, pp. 196-206, 2005. https://doi.org/10.1016/j.trac.2005.09.006
  3. S. Choi, Y. Yang, and J. Chae, “Surface plasmon resonance protein sensor using vroman effect,” Biosens. Bioelectron., vol. 24, pp. 893-899, 2008. https://doi.org/10.1016/j.bios.2008.07.036
  4. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, pp. 583-586, 2006. https://doi.org/10.1021/nl052134m
  5. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol., vol. 2, pp. 114-120, 2007. https://doi.org/10.1038/nnano.2006.208
  6. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol., vol. 3, pp. 533-537, 2008. https://doi.org/10.1038/nnano.2008.200
  7. J. Lagowski, H. C. Gatos, and J. E. S. Sproles, “Surface stress and the normal mode of vibration of thin crystals : GaAs,” Appl. Phys. Lett., vol. 26, pp. 493-495, 1975. https://doi.org/10.1063/1.88231
  8. P. Lu, H. P. Lee, C. Lu, and S. J. O'Shea, “Surface stress effects on the resonance properties of cantilever sensors,” Phys. Rev. B., vol. 72, pp. 085405, 2005. https://doi.org/10.1103/PhysRevB.72.085405
  9. K. Eom, J. Yang, J. Park, G. Yoon, Y. Sohn, S. Park, D. Yoon, S. Na, and T. Kwon, “Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays,” Int. J. Mol. Sci., vol. 10, pp. 4009-4032, 2009. https://doi.org/10.3390/ijms10094009
  10. D. J. Muller and Y. F. Dufrene, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol., vol. 3, pp. 261-269, 2008. https://doi.org/10.1038/nnano.2008.100
  11. K. M. Goeders, J. S. Colton, and L. A. Bottomley, “Microcantilevers: Sensing Chemical Interactions via Mechanical Motion,” Chem. Rev., vol. 108, pp. 522-542, 2008. https://doi.org/10.1021/cr0681041
  12. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. A, vol. 82, pp. 172-175, 1909. https://doi.org/10.1098/rspa.1909.0021
  13. R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021-2024, 1997. https://doi.org/10.1126/science.276.5321.2021
  14. T. Kwon, J. Park, J. Yang, D. S. Yoon, S. Na, C.-W. Kim, J. S. Suh, Y. M. Huh, S. Haam, and K. Eom, “Nanomechanical in situ monitoring of proteolysis of peptide by cathepsin B,” PLoS ONE, vol. 4, pp. e6248, 2009. https://doi.org/10.1371/journal.pone.0006248
  15. K. Castelino, B. Kannan, and A. Majumdar, “Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces,” Langmuir, vol. 21, pp. 1956-1961, 2005. https://doi.org/10.1021/la047943k
  16. T. Y. Kwon, K. Eom, J. H. Park, D. S. Yoon, T. S. Kim, and H. L. Lee, “In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid,” Appl. Phys. Lett., vol. 90, pp. 223903, 2007. https://doi.org/10.1063/1.2741053
  17. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, vol. 7, pp. 1238-1255, 2007. https://doi.org/10.1039/b707401h
  18. G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen(PSA) using microcantilevers,” Nat. Biotechnol., vol. 19, pp. 856-860, 2001. https://doi.org/10.1038/nbt0901-856
  19. J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H. J. Guntherodt, M. Hegner, and C. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nat. Nanotechnol., vol. 1, pp. 214-220, 2006. https://doi.org/10.1038/nnano.2006.134
  20. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316-318, 2000. https://doi.org/10.1126/science.288.5464.316
  21. R. McKendry, J. Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. J. Guntherodt, and C. Gerber, “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” Proc. Natl. Acad. Sci. USA., vol. 99, pp. 9783-9788, 2002. https://doi.org/10.1073/pnas.152330199
  22. G. H. Wu, H. F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. USA., vol. 98, pp. 1560-1564, 2001. https://doi.org/10.1073/pnas.031362498
  23. J. W. Ndieyira, M. Watari, A. D. Barrera, D. Zhou, M. Vogtli, M. Batchelor, M. A. Cooper, T. Strunz, M. A. Horton, C. Abell, T. Rayment, G. Aeppli, and R. A. McKendry, “Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance,” Nat. Nanotechnol., vol. 3, pp. 691-696, 2008. https://doi.org/10.1038/nnano.2008.275
  24. T. Braun, V. Barwich, M. K. Ghatkesar, A. H. Bredekamp, C. Gerber, M. Hegner, and H. P. Lang, “Micromechanical mass sensors for biomolecular detection in a physiological environment,” Phys. Rev. E., vol. 72, pp. 031907, 2005. https://doi.org/10.1103/PhysRevE.72.031907
  25. D. W. Chun, K. S. Hwang, K. Eom, J. H. Lee, B. H. Cha, W. Y. Lee, D. S. Yoon, and T. S. Kim, “Detection of the Au thin-layer in the Hz per picogram regime based on the microcantilevers,” Sens. Actuat. A, vol. 135, pp. 857-862, 2007. https://doi.org/10.1016/j.sna.2006.09.013
  26. W. Haiss, “Surface stress of clean and adsorbate-covered solids,” Rep. Prog. Phys., vol. 64, pp. 591, 2001. https://doi.org/10.1088/0034-4885/64/5/201
  27. H. Ibach, “The role of surface stress in reconstruction, epitaxial growth, and stabilization of mesoscopic structures,” Surf. Sci. Rep., vol. 29, pp. 193-263, 1997.
  28. L. B. Freund and S. Suresh, Thin Film Materials, Cambridge University Press, Cambridge, 2003.
  29. B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead, “Enumeration of DNA molecules bound to a nanomechanical oscillator,” Nano Lett., vol. 5, pp. 925-929, 2005. https://doi.org/10.1021/nl050456k
  30. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature, vol. 446, pp. 1066-1069, 2007. https://doi.org/10.1038/nature05741
  31. A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of mass, density, and volume during the cell cycle of yeast,” Proc. Natl. Acad. Sci. USA., vol. 107, pp. 999-1004, 2010. https://doi.org/10.1073/pnas.0901851107
  32. K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Micromechanical oscillators as rapid biosensor for the detection of active growth of escherichia coli,” Biosens. Bioelectron., vol. 21, pp. 528-533, 2005. https://doi.org/10.1016/j.bios.2004.11.018
  33. N. Nugaeva, K. Y. Gfeller, N. Backmann, H. P. Lang, M. Duggelin, and M. Hegner, “Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection,” Biosens. Bioelectron., vol. 21, pp. 849-856, 2005. https://doi.org/10.1016/j.bios.2005.02.004
  34. B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Mechanical resonant immunospecific biological detector,” Appl. Phys. Lett., vol. 77, pp. 450-452, 2000. https://doi.org/10.1063/1.127006
  35. A. P. Davila, J. Jang, A. K. Gupta, T. Walter, A. Aronson, and R. Bashir, “Microresonator mass sensors for detection of bacillus anthracis sterne spores in air and water,” Biosens. Bioelectron., vol. 22, pp. 3028-3035, 2007. https://doi.org/10.1016/j.bios.2007.01.012
  36. S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett., vol. 6, pp. 2109-2114, 2006. https://doi.org/10.1021/nl061397t
  37. T. P. Burg and S. R. Manalis, “Suspended microchannel resonators for biomolecular detection,” Appl. Phys. Lett., vol. 83, pp. 2698-2700, 2003. https://doi.org/10.1063/1.1611625
  38. M. Su, S. Li, and V. P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Appl. Phys. Lett., vol. 82, pp. 3562-3564, 2003. https://doi.org/10.1063/1.1576915
  39. T. Kwon, K. Eom, J. Park, D. S. Yoon, H. L. Lee, and T. S. Kim, “Micromechanical observation of the kinetics of biomolecular interactions,” Appl. Phys. Lett., vol. 93, pp. 173901, 2008. https://doi.org/10.1063/1.3006329
  40. J. H. Lee, T. S. Kim, and K. H. Yoon, “Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O-3 thin film microcantilever for the detection of C-reactive protein,” Appl. Phys. Lett., vol. 84, pp. 3187-3189, 2004. https://doi.org/10.1063/1.1712028
  41. M. Varshney, P. S. Waggoner, C. P. Tan, K. Aubin, R. A. Montagna, and H. G. Craighead, “Prion protein detection using nanomechanical resonator arrays and secondary mass labeling,” Anal. Chem., vol. 80, pp. 2141-2148, 2008. https://doi.org/10.1021/ac702153p
  42. T. Kodadek, “Biochemistry: molecular cloaking devices,” Nature, vol. 453, pp. 861-862, 2008. https://doi.org/10.1038/453861a
  43. J. S. Sebolt-Leopold and J. M. English, “Mechanisms of drug inhibition of signalling molecules,” Nature, vol. 441, pp. 457-462, 2006. https://doi.org/10.1038/nature04874
  44. I. Kozinsky, H. W. C. Postma, I. Bargatin, and M. L. Roukes, “Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators,” Appl. Phys. Lett., vol. 88, pp. 253101, 2006. https://doi.org/10.1063/1.2209211
  45. H. W. C. Postma, I. Kozinsky, A. Husain, and M. L. Roukes, “Dynamic range of nanotube- and nanowire-based electromechanical systems,” Appl. Phys. Lett., vol. 86, pp. 223105, 2005. https://doi.org/10.1063/1.1929098
  46. X. M. H. Huang, X. L. Feng, C. A. Zorman, M. Mehregany, and M. L. Roukes, “VHF, UHF and microwave frequency nanomechanical resonators,” New J. Phys., vol. 7, pp. 247-247, 2005. https://doi.org/10.1088/1367-2630/7/1/247
  47. M. D. Dai, K. Eom, and C.-W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett., vol. 95, pp. 203104, 2009. https://doi.org/10.1063/1.3265731
  48. L. Meirovitch, Analytical methods in vibrations, Macmillan, New York, 1967.
  49. J. T. Oden, E. B. Becker, and G. F. Carey, Finite Elements: An Introduction(Vol. 1), Prentice Hall, 1981.
  50. J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York, 1976.
  51. J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York, 1963.
  52. C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, 1964.
  53. S. Cherian and T. Thundat, “Determination of adsorption-induced variation in the spring constant of a microcantilever,” Appl. Phys. Lett., vol. 80, pp. 2219-2221, 2002. https://doi.org/10.1063/1.1463720
  54. A. W. McFarland, M. A. Poggi, M. J. Doyle, L. A. Bottomley, and J. S. Colton, “Influence of surface stress on the resonance behavior of microcantilevers,” Appl. Phys. Lett., vol. 87, pp. 053505, 2005. https://doi.org/10.1063/1.2006212
  55. K. S. Hwang, K. Eom, J. H. Lee, D. W. Chun, B. H. Cha, D. S. Yoon, T. S. Kim, and J. H. Park, “Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers,” Appl. Phys. Lett., vol. 89, pp. 173905, 2006. https://doi.org/10.1063/1.2372700
  56. J. Dorignac, A. Kalinowski, S. Erramilli, and P. Mohanty, “Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition,” Phys. Rev. Lett., vol. 96, pp. 186105, 2006. https://doi.org/10.1103/PhysRevLett.96.186105
  57. M. E. Gurtin, X. Markenscoff, and R. N. Thurston, “Effect of surface stress on the natural frequency of thin crystals,” Appl. Phys. Lett., vol. 29, pp. 529-530, 1976. https://doi.org/10.1063/1.89173
  58. M. J. Lachut and J. E. Sader, “Effect of Surface Stress on the Stiffness of Cantilever Plates,” Phys. Rev. Lett., vol. 99, pp. 206102, 2007. https://doi.org/10.1103/PhysRevLett.99.206102
  59. M. J. Lachut and J. E. Sader, “Effect of surface stress on the stiffness of cantilever plates: Influence of cantilever geometry,” Appl. Phys. Lett., vol. 95, pp. 193505, 2009. https://doi.org/10.1063/1.3262347
  60. M. F. Hagan, A. Majumdar, and A. K. Chakraborty, “Nanomechanical Forces Generated by Surface Grafted DNA,” J. Phys. Chem. B, vol. 106, pp. 10163-10173, 2002. https://doi.org/10.1021/jp020972o
  61. K. Eom, T. Y. Kwon, D. S. Yoon, H. L. Lee, and T. S. Kim, “Dynamical response of nanomechanical resonators to biomolecular interactions,” Phys. Rev. B., vol. 76, pp. 113408, 2007. https://doi.org/10.1103/PhysRevB.76.113408
  62. X. Yi and H. L. Duan, “Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors,” J. Mech. Phys. Solids, vol. 57, pp. 1254-1266, 2009. https://doi.org/10.1016/j.jmps.2009.04.010
  63. G.-Y. Huang, W. Gao, and S.-W. Yu, “Model for the adsorption-induced change in resonance frequency of a cantilever,” Appl. Phys. Lett., vol. 89, pp. 043506, 2006. https://doi.org/10.1063/1.2236102
  64. E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, and M.A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett., vol. 7, pp. 3405-3409, 2007. https://doi.org/10.1021/nl071792z
  65. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
  66. M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, “Realtime, label-free detection of biological entities using nanowire-based fets,” IEEE Trans. Nanotechnol., vol. 7, pp. 651-667, 2008. https://doi.org/10.1109/TNANO.2008.2006165
  67. Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, “Silicon nanowire arrays for label-free detection of DNA,” Anal. Chem., vol. 79, pp. 3291-3297, 2007. https://doi.org/10.1021/ac061808q
  68. K.-Y. Park, Y.-S. Sohn, C.-K. Kim, H.-S. Kim, Y.-S. Bae, and S.-Y. Choi, “Developemt of FET-type albumin sensor for diagnosing nephritis,” Biosens. Bioelectron., vol. 23, pp. 1904-1907, 2008. https://doi.org/10.1016/j.bios.2008.03.011
  69. F. Patolsky, B. T. Timko, G. Zheng, and C. M. Lieber, “Nanowire-based nanoelectronic devices in the life sciences,” MRS Bull., vol. 32, pp. 142-149, 2007. https://doi.org/10.1557/mrs2007.47
  70. M. J. Schoning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs),” Analyst, vol. 127, pp. 1137-1151, 2002. https://doi.org/10.1039/b204444g
  71. A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I. B. Baek, C.-G. Ahn, C. W. park, M. S. Jun, and S. Lee, “Ultrasensitive, labe-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett., vol. 91, pp. 103901, 2007. https://doi.org/10.1063/1.2779965
  72. W. U. Wang, C. Chen, K.-H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci., vol. 102, pp. 3208-3212, 2005. https://doi.org/10.1073/pnas.0406368102
  73. F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc., vol. 1, pp. 1711-1724, 2006. https://doi.org/10.1038/nprot.2006.227
  74. E. Stern, J. K. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature Letters, vol. 445, pp. 519-522, 2007. https://doi.org/10.1038/nature05498
  75. Y. Chen, X. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, “Silicon-based nanoelectronic field-effect pH sensor with local gate control,” Appl. Phys. Lett., vol. 89, pp. 223512, 2006. https://doi.org/10.1063/1.2392828
  76. Y.-S. Sohn, G. B. Kang, and Y. T. Kim, “Fabrication of silicon nanowire field-effect transistor biosensor by CMOS compatible top-down approach with descum process,” Sensor Lett., vol. 7, pp. 1039-1043, 2009. https://doi.org/10.1166/sl.2009.1231
  77. C. W. Park, C.-G. Ahn. J.-H. Yang, I.-B. Baek, C. S. Ah, A. Kim, T.-Y. Kim, and G. Y. Sung, “Control of channel doping concentration for enhancing the sensitivity of ‘top-down’ fabricated Si nanochannel FET biosensors,” Nanotechnology, vol. 20, pp. 475501, 2009. https://doi.org/10.1088/0957-4484/20/47/475501