Browse > Article
http://dx.doi.org/10.5369/JSST.2010.19.6.403

Nano and micro structures for label-free detection of biomolecules  

Eom, Kil-Ho (Department of Mechanical Engineering, Korea University)
Kwon, Tae-Yun (Department of Biomedical Engineering, Yonsei University)
Sohn, Young-Soo (Department of Biomedical Engineering, Catholic University of Daegu)
Publication Information
Journal of Sensor Science and Technology / v.19, no.6, 2010 , pp. 403-420 More about this Journal
Abstract
Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.
Keywords
nano/micro structure; label-free; biosensors; resonator; nanowire FET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. W. McFarland, M. A. Poggi, M. J. Doyle, L. A. Bottomley, and J. S. Colton, “Influence of surface stress on the resonance behavior of microcantilevers,” Appl. Phys. Lett., vol. 87, pp. 053505, 2005.   DOI   ScienceOn
2 K. S. Hwang, K. Eom, J. H. Lee, D. W. Chun, B. H. Cha, D. S. Yoon, T. S. Kim, and J. H. Park, “Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers,” Appl. Phys. Lett., vol. 89, pp. 173905, 2006.   DOI   ScienceOn
3 J. Dorignac, A. Kalinowski, S. Erramilli, and P. Mohanty, “Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition,” Phys. Rev. Lett., vol. 96, pp. 186105, 2006.   DOI   ScienceOn
4 M. E. Gurtin, X. Markenscoff, and R. N. Thurston, “Effect of surface stress on the natural frequency of thin crystals,” Appl. Phys. Lett., vol. 29, pp. 529-530, 1976.   DOI
5 M. J. Lachut and J. E. Sader, “Effect of Surface Stress on the Stiffness of Cantilever Plates,” Phys. Rev. Lett., vol. 99, pp. 206102, 2007.   DOI   ScienceOn
6 M. J. Lachut and J. E. Sader, “Effect of surface stress on the stiffness of cantilever plates: Influence of cantilever geometry,” Appl. Phys. Lett., vol. 95, pp. 193505, 2009.   DOI   ScienceOn
7 M. F. Hagan, A. Majumdar, and A. K. Chakraborty, “Nanomechanical Forces Generated by Surface Grafted DNA,” J. Phys. Chem. B, vol. 106, pp. 10163-10173, 2002.   DOI   ScienceOn
8 K. Eom, T. Y. Kwon, D. S. Yoon, H. L. Lee, and T. S. Kim, “Dynamical response of nanomechanical resonators to biomolecular interactions,” Phys. Rev. B., vol. 76, pp. 113408, 2007.   DOI   ScienceOn
9 M. Varshney, P. S. Waggoner, C. P. Tan, K. Aubin, R. A. Montagna, and H. G. Craighead, “Prion protein detection using nanomechanical resonator arrays and secondary mass labeling,” Anal. Chem., vol. 80, pp. 2141-2148, 2008.   DOI   ScienceOn
10 T. Kodadek, “Biochemistry: molecular cloaking devices,” Nature, vol. 453, pp. 861-862, 2008.   DOI   ScienceOn
11 J. S. Sebolt-Leopold and J. M. English, “Mechanisms of drug inhibition of signalling molecules,” Nature, vol. 441, pp. 457-462, 2006.   DOI   ScienceOn
12 I. Kozinsky, H. W. C. Postma, I. Bargatin, and M. L. Roukes, “Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators,” Appl. Phys. Lett., vol. 88, pp. 253101, 2006.   DOI   ScienceOn
13 H. W. C. Postma, I. Kozinsky, A. Husain, and M. L. Roukes, “Dynamic range of nanotube- and nanowire-based electromechanical systems,” Appl. Phys. Lett., vol. 86, pp. 223105, 2005.   DOI   ScienceOn
14 X. M. H. Huang, X. L. Feng, C. A. Zorman, M. Mehregany, and M. L. Roukes, “VHF, UHF and microwave frequency nanomechanical resonators,” New J. Phys., vol. 7, pp. 247-247, 2005.   DOI   ScienceOn
15 M. D. Dai, K. Eom, and C.-W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett., vol. 95, pp. 203104, 2009.   DOI   ScienceOn
16 L. Meirovitch, Analytical methods in vibrations, Macmillan, New York, 1967.
17 J. T. Oden, E. B. Becker, and G. F. Carey, Finite Elements: An Introduction(Vol. 1), Prentice Hall, 1981.
18 J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York, 1976.
19 J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York, 1963.
20 C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, 1964.
21 B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Mechanical resonant immunospecific biological detector,” Appl. Phys. Lett., vol. 77, pp. 450-452, 2000.   DOI   ScienceOn
22 R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021-2024, 1997.   DOI   ScienceOn
23 T. Kwon, J. Park, J. Yang, D. S. Yoon, S. Na, C.-W. Kim, J. S. Suh, Y. M. Huh, S. Haam, and K. Eom, “Nanomechanical in situ monitoring of proteolysis of peptide by cathepsin B,” PLoS ONE, vol. 4, pp. e6248, 2009.   DOI   ScienceOn
24 M. A. Cooper Edit., Label-free biosensors, Cambridge, New York, 2009.
25 K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Micromechanical oscillators as rapid biosensor for the detection of active growth of escherichia coli,” Biosens. Bioelectron., vol. 21, pp. 528-533, 2005.   DOI   ScienceOn
26 N. Nugaeva, K. Y. Gfeller, N. Backmann, H. P. Lang, M. Duggelin, and M. Hegner, “Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection,” Biosens. Bioelectron., vol. 21, pp. 849-856, 2005.   DOI   ScienceOn
27 A. P. Davila, J. Jang, A. K. Gupta, T. Walter, A. Aronson, and R. Bashir, “Microresonator mass sensors for detection of bacillus anthracis sterne spores in air and water,” Biosens. Bioelectron., vol. 22, pp. 3028-3035, 2007.   DOI   ScienceOn
28 S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett., vol. 6, pp. 2109-2114, 2006.   DOI   ScienceOn
29 T. P. Burg and S. R. Manalis, “Suspended microchannel resonators for biomolecular detection,” Appl. Phys. Lett., vol. 83, pp. 2698-2700, 2003.   DOI   ScienceOn
30 M. Su, S. Li, and V. P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Appl. Phys. Lett., vol. 82, pp. 3562-3564, 2003.   DOI   ScienceOn
31 T. Kwon, K. Eom, J. Park, D. S. Yoon, H. L. Lee, and T. S. Kim, “Micromechanical observation of the kinetics of biomolecular interactions,” Appl. Phys. Lett., vol. 93, pp. 173901, 2008.   DOI   ScienceOn
32 T. Braun, V. Barwich, M. K. Ghatkesar, A. H. Bredekamp, C. Gerber, M. Hegner, and H. P. Lang, “Micromechanical mass sensors for biomolecular detection in a physiological environment,” Phys. Rev. E., vol. 72, pp. 031907, 2005.   DOI
33 L. G. Carrascosa, M. Moreno, M. Alvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” Trac-Trends Anal. Chem., vol. 25, pp. 196-206, 2005.   DOI   ScienceOn
34 S. Choi, Y. Yang, and J. Chae, “Surface plasmon resonance protein sensor using vroman effect,” Biosens. Bioelectron., vol. 24, pp. 893-899, 2008.   DOI   ScienceOn
35 J. Lagowski, H. C. Gatos, and J. E. S. Sproles, “Surface stress and the normal mode of vibration of thin crystals : GaAs,” Appl. Phys. Lett., vol. 26, pp. 493-495, 1975.   DOI
36 A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I. B. Baek, C.-G. Ahn, C. W. park, M. S. Jun, and S. Lee, “Ultrasensitive, labe-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett., vol. 91, pp. 103901, 2007.   DOI   ScienceOn
37 W. U. Wang, C. Chen, K.-H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci., vol. 102, pp. 3208-3212, 2005.   DOI   ScienceOn
38 J. H. Lee, T. S. Kim, and K. H. Yoon, “Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O-3 thin film microcantilever for the detection of C-reactive protein,” Appl. Phys. Lett., vol. 84, pp. 3187-3189, 2004.   DOI   ScienceOn
39 J. W. Ndieyira, M. Watari, A. D. Barrera, D. Zhou, M. Vogtli, M. Batchelor, M. A. Cooper, T. Strunz, M. A. Horton, C. Abell, T. Rayment, G. Aeppli, and R. A. McKendry, “Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance,” Nat. Nanotechnol., vol. 3, pp. 691-696, 2008.   DOI   ScienceOn
40 D. W. Chun, K. S. Hwang, K. Eom, J. H. Lee, B. H. Cha, W. Y. Lee, D. S. Yoon, and T. S. Kim, “Detection of the Au thin-layer in the Hz per picogram regime based on the microcantilevers,” Sens. Actuat. A, vol. 135, pp. 857-862, 2007.   DOI   ScienceOn
41 W. Haiss, “Surface stress of clean and adsorbate-covered solids,” Rep. Prog. Phys., vol. 64, pp. 591, 2001.   DOI   ScienceOn
42 H. Ibach, “The role of surface stress in reconstruction, epitaxial growth, and stabilization of mesoscopic structures,” Surf. Sci. Rep., vol. 29, pp. 193-263, 1997.
43 L. B. Freund and S. Suresh, Thin Film Materials, Cambridge University Press, Cambridge, 2003.
44 B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead, “Enumeration of DNA molecules bound to a nanomechanical oscillator,” Nano Lett., vol. 5, pp. 925-929, 2005.   DOI   ScienceOn
45 T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature, vol. 446, pp. 1066-1069, 2007.   DOI   ScienceOn
46 Y.-S. Sohn, G. B. Kang, and Y. T. Kim, “Fabrication of silicon nanowire field-effect transistor biosensor by CMOS compatible top-down approach with descum process,” Sensor Lett., vol. 7, pp. 1039-1043, 2009.   DOI
47 F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc., vol. 1, pp. 1711-1724, 2006.   DOI   ScienceOn
48 E. Stern, J. K. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature Letters, vol. 445, pp. 519-522, 2007.   DOI   ScienceOn
49 Y. Chen, X. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, “Silicon-based nanoelectronic field-effect pH sensor with local gate control,” Appl. Phys. Lett., vol. 89, pp. 223512, 2006.   DOI   ScienceOn
50 C. W. Park, C.-G. Ahn. J.-H. Yang, I.-B. Baek, C. S. Ah, A. Kim, T.-Y. Kim, and G. Y. Sung, “Control of channel doping concentration for enhancing the sensitivity of ‘top-down’ fabricated Si nanochannel FET biosensors,” Nanotechnology, vol. 20, pp. 475501, 2009.   DOI   ScienceOn
51 X. Yi and H. L. Duan, “Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors,” J. Mech. Phys. Solids, vol. 57, pp. 1254-1266, 2009.   DOI   ScienceOn
52 P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, vol. 7, pp. 1238-1255, 2007.   DOI   ScienceOn
53 A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of mass, density, and volume during the cell cycle of yeast,” Proc. Natl. Acad. Sci. USA., vol. 107, pp. 999-1004, 2010.   DOI   ScienceOn
54 K. Castelino, B. Kannan, and A. Majumdar, “Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces,” Langmuir, vol. 21, pp. 1956-1961, 2005.   DOI   ScienceOn
55 T. Y. Kwon, K. Eom, J. H. Park, D. S. Yoon, T. S. Kim, and H. L. Lee, “In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid,” Appl. Phys. Lett., vol. 90, pp. 223903, 2007.   DOI   ScienceOn
56 G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen(PSA) using microcantilevers,” Nat. Biotechnol., vol. 19, pp. 856-860, 2001.   DOI   ScienceOn
57 J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H. J. Guntherodt, M. Hegner, and C. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nat. Nanotechnol., vol. 1, pp. 214-220, 2006.   DOI   ScienceOn
58 J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316-318, 2000.   DOI   ScienceOn
59 R. McKendry, J. Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. J. Guntherodt, and C. Gerber, “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” Proc. Natl. Acad. Sci. USA., vol. 99, pp. 9783-9788, 2002.   DOI   ScienceOn
60 G.-Y. Huang, W. Gao, and S.-W. Yu, “Model for the adsorption-induced change in resonance frequency of a cantilever,” Appl. Phys. Lett., vol. 89, pp. 043506, 2006.   DOI   ScienceOn
61 E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, and M.A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett., vol. 7, pp. 3405-3409, 2007.   DOI   ScienceOn
62 Y. Cui, Q. Wei, H. Park, and C.M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, 2001.   DOI   ScienceOn
63 M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, “Realtime, label-free detection of biological entities using nanowire-based fets,” IEEE Trans. Nanotechnol., vol. 7, pp. 651-667, 2008.   DOI   ScienceOn
64 Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, “Silicon nanowire arrays for label-free detection of DNA,” Anal. Chem., vol. 79, pp. 3291-3297, 2007.   DOI   ScienceOn
65 K.-Y. Park, Y.-S. Sohn, C.-K. Kim, H.-S. Kim, Y.-S. Bae, and S.-Y. Choi, “Developemt of FET-type albumin sensor for diagnosing nephritis,” Biosens. Bioelectron., vol. 23, pp. 1904-1907, 2008.   DOI   ScienceOn
66 F. Patolsky, B. T. Timko, G. Zheng, and C. M. Lieber, “Nanowire-based nanoelectronic devices in the life sciences,” MRS Bull., vol. 32, pp. 142-149, 2007.   DOI
67 M. J. Schoning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs),” Analyst, vol. 127, pp. 1137-1151, 2002.   DOI   ScienceOn
68 S. Cherian and T. Thundat, “Determination of adsorption-induced variation in the spring constant of a microcantilever,” Appl. Phys. Lett., vol. 80, pp. 2219-2221, 2002.   DOI   ScienceOn
69 Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, pp. 583-586, 2006.   DOI   ScienceOn
70 G. H. Wu, H. F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. USA., vol. 98, pp. 1560-1564, 2001.   DOI   ScienceOn
71 M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol., vol. 2, pp. 114-120, 2007.   DOI   ScienceOn
72 K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol., vol. 3, pp. 533-537, 2008.   DOI   ScienceOn
73 P. Lu, H. P. Lee, C. Lu, and S. J. O'Shea, “Surface stress effects on the resonance properties of cantilever sensors,” Phys. Rev. B., vol. 72, pp. 085405, 2005.   DOI
74 K. Eom, J. Yang, J. Park, G. Yoon, Y. Sohn, S. Park, D. Yoon, S. Na, and T. Kwon, “Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays,” Int. J. Mol. Sci., vol. 10, pp. 4009-4032, 2009.   DOI   ScienceOn
75 D. J. Muller and Y. F. Dufrene, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol., vol. 3, pp. 261-269, 2008.   DOI   ScienceOn
76 K. M. Goeders, J. S. Colton, and L. A. Bottomley, “Microcantilevers: Sensing Chemical Interactions via Mechanical Motion,” Chem. Rev., vol. 108, pp. 522-542, 2008.   DOI   ScienceOn
77 G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. A, vol. 82, pp. 172-175, 1909.   DOI