DOI QR코드

DOI QR Code

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor

스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출

  • Park, Sang-Hyun (Biomedical Physics Laboratory, School of Physics, Seoul National University) ;
  • Soh, Kwang-Sup (Biomedical Physics Laboratory, School of Physics, Seoul National University) ;
  • Ahn, Myung-Cheon (Dept. of Oriental and Western Medical Engineering, Graduation, Sangji University) ;
  • Hwang, Do-Guwn (Dept. of Applied Physics and Electronics, Dept. of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Applied Physics and Electronics, Dept. of Oriental Biomedical Engineering, Sangji University)
  • 박상현 (한의학물리연구실, 물리학부, 서울대학교) ;
  • 소광섭 (한의학물리연구실, 물리학부, 서울대학교) ;
  • 안명천 (동서의료공학과, 대학원, 상지대학교) ;
  • 황도근 (응용물리전자학과, 한방의료공학과, 상지대학교) ;
  • 이상석 (응용물리전자학과, 한방의료공학과, 상지대학교)
  • Published : 2006.06.01

Abstract

In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

이온빔 증착 스퍼터링법과 고아 리소그래피법으로 FeMn-스핀밸브 바이오 센서를 제작하였다. 혈액내의 Fe를 포함한 헤모글로빈(Hemoglobin)과 나노 자성입자의 자성검출은 최대 자장감응 약 $0.1{\sim}0.8%/Oe$인 거대자기저항 스핀밸브 바이오 센싱소자를 이용하였다. 사용된 혈액은 인체의 피였고, Co-페라이트 나노 자성입자는 수용성 무정형 실리카로 코팅이 되었으며, 그 크기의 평균직경의 범위는 9nm에서 50nm이었다. 실제 크기가 $5x10{\mu}m^2 $ 혹은 $2x6{\mu}m^2 $로 제작된 센싱소자의 4 전극 중 전류 입력단자에 흐르는 감지전류는 1 mA로 하였다. 혈액과 나노자성 입자가 소자의 중앙부분으로 떨어졌을 때, 출력신호는 각각 자성 여부의 검출 특성을 알 수 있는 충분한 크기로 나타났다.

Keywords

References

  1. C. Anfinsen, Science, 181, 223 (1973) https://doi.org/10.1126/science.181.4096.223
  2. D. A. Baker, Nature, 405, 39 (2000) https://doi.org/10.1038/35011000
  3. B. T. Zhang, Physics and High Technology (Korean Physical Society), 12, 13 (2003)
  4. C. B. Choi, Physics and High Technology (Korean Physical Society), 12, 9 (2003)
  5. J. Miyakoshi, Prog. In Biophysics and Molecular Biology, 87, 213 (2005) https://doi.org/10.1016/j.pbiomolbio.2004.08.008
  6. J. M. Perez, L. Josephson, and R. Weissleder, Chembiochem., 5, 261 (2004) https://doi.org/10.1002/cbic.200300730
  7. W. S. Yoon, Physics and High Technology (Korean Physical Society), 12, 22 (2003)
  8. K. Mizoguchi, S. Tanaka, T. Ogawa, N. Shiobara, and H. Sakamoto, Phys. Rev. B, 72, 33106 (2005) https://doi.org/10.1103/PhysRevB.72.033106
  9. T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon, Phys. Today, 54, 46 (2001)
  10. A. I. Zhernovoy, L. M. Sharshina, and V. A. Chirukhin, Bulletin of Experimental Biology and Medicine, 3, 844 (2001)
  11. T. Takeuchi, T. Mizuno, T. Higashi, A. Yamagishi, and M. Date, J. of Magnetism and Magnetic Materials, 140-144, 1462 (1995) https://doi.org/10.1016/0304-8853(94)01351-9
  12. M. Bartoszek, Z. Drzazga, J. of Magnetism and Magnetic Materials, 196-197, 573 (1999) https://doi.org/10.1016/S0304-8853(98)00727-6
  13. B. H. Kim, J. Acd. Med. Sci. DPR Korea, 168, 39 (1965)
  14. K. Y. Baik, J. W. Lee, B. C. Lee, H. M. Johng, T. G. Nam, B. K. Sung, S. I. Cho, and K. S. Soh, Key Engineering Materials, b, 125 (2005)
  15. S. S. Lee, B. K. Kim. J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim. J. Y. Hwang, and J. R. Rhee, J. Appl. Phys., 95, 7525 (2004) https://doi.org/10.1063/1.1676035
  16. S. S. Lee, J. Y. Lee, and D. G. Hwang, J. of Magnetics, 9, 23 (2004) https://doi.org/10.4283/JMAG.2004.9.1.023
  17. K. S. Saladin, Anatomy and Physiology, 3th Edi. McGraw-Hill, (2004)
  18. S. S. Lee, J. G. Choi, S. W. Kim. D. G. Hwang, and J. R. Rhee, J. of Magnetics, 10, 44 (2005) https://doi.org/10.4283/JMAG.2005.10.2.044
  19. T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M. H. Cho, and J. K. Lee, Angw. Chem. Int. Ed. Engl., 44, 1068 (2005) https://doi.org/10.1002/anie.200461910

Cited by

  1. Development of Prediction Algorithm for Replete Pulse and Vacuous Pulse by using Clip-type Pulsimeter with Hall Device Measuring a Magnetic Field vol.23, pp.3, 2013, https://doi.org/10.4283/JKMS.2013.23.3.104
  2. Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor vol.23, pp.3, 2013, https://doi.org/10.4283/JKMS.2013.23.3.098
  3. Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device vol.24, pp.4, 2014, https://doi.org/10.4283/JKMS.2014.24.4.101
  4. Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device vol.25, pp.1, 2015, https://doi.org/10.4283/JKMS.2015.25.1.016
  5. Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells vol.25, pp.5, 2015, https://doi.org/10.4283/JKMS.2015.25.5.162
  6. Use of a GMR-SV Device Below a Single Coil and Channel to Detect the Deformation Properties of Red Blood Cell Membranes pp.1543-186X, 2019, https://doi.org/10.1007/s11664-018-6617-7