• Title/Summary/Keyword: Non-Manifold

Search Result 268, Processing Time 0.02 seconds

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION

  • Jun, Jae-Bok;Ahmad, Mobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • We define a semi-symmetric metric connection in an almost $\gamma$-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost $\gamma$-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

Asymptotic dirichlet problem for schrodinger operator and rough isometry

  • Yoon, Jaihan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.103-114
    • /
    • 1997
  • The asymptotic Dirichlet problem for harmonic functions on a noncompact complete Riemannian manifold has a long history. It is to find the harmonic function satisfying the given Dirichlet boundary condition at infinity. By now, it is well understood [A, AS, Ch, S], when M is a Cartan-Hadamard manifold with sectional curvature $-b^2 \leq K_M \leq -a^2 < 0$. (By a Cartan-Hadamard manifold, we mean a complete simply connected manifold of non-positive sectional curvature.)

  • PDF

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.

ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

  • Chen, Xiaomin
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.707-719
    • /
    • 2020
  • In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies -6 ⩽ s ⩽ 6 for n = 1 and -2n(2n + 1) ${\frac{4n^2-4n+3}{4n^2-4n-1}}$ ⩽ s ⩽ 2n(2n + 1) for n ⩾ 2. Secondly, for a (2n + 1)-dimensional weakly Einstein contact metric (κ, μ)-manifold with κ < 1, we prove that it is flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for n = 1 and that for n ⩾ 2 there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group.

ON THE STRUCTURE OF MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF NON-NEGATIVE CURVATURE

  • Yun, Gab-Jin;Kim, Dong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1213-1219
    • /
    • 2009
  • Let M$^n$ be a complete oriented non-compact minimally immersed submanifold in a complete Riemannian manifold N$^{n+p}$ of nonnegative curvature. We prove that if M is super-stable, then there are no non-trivial L$^2$ harmonic one forms on M. This is a generalization of the main result in [8].