HYPERSURFACES OF ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION

Jae-Bok Jun* and Mobin Ahmad

ABSTRACT. We define a semi-symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

1. Introduction

Let ∇^* be a linear connection in an *n*-dimensional differentiable manifold M. The torsion tensor T of ∇^* is given by

$$T(X,Y) = \nabla_X^* Y - \nabla_Y^* X - [X,Y]$$

for all vector fields X and Y in M and is of type (1,2). The connection ∇^* is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇^* is metric connection if there is a Riemannian metric g in M such that $\nabla^* g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric if it is the Levi-Civita connection.

In [7], [8], A. Friedmann and J. A. Schouten introduced the idea of a semi-symmetric linear connection in a differentiable manifold. A linear connection is said to be semi-symmetric if its torsion tensor T is of the form

$$T(X,Y) = u(Y)X - u(X)Y,$$

where u is a 1-forms. In [9], K. Yano considered a semi-symmetric metric connection and studied some of its properties. Almost r-paracontact structures were defined by A. Bucki and Miernowski in [5]. In [4], A. Bucki introduced r-paracontact structures of P-Sasakian type. Properties of hypersurface of almost r-paracontact Riemannian manifold were studied by A. Bucki in [3]. M. Ahmad, J.-B. Jun, and A. Haseeb studied some properties of hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric

Received July 23, 2008; Revised November 7, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 53D12,\ 53C05.$

 $[\]it Key\ words\ and\ phrases.$ hypersurface, almost r-paracontact Riemannian manifold, semi-symmetric metric connection.

^{*} Partially supported by Kookmin University 2009.

metric connection in [1]. Also M. Ahmad and C. Ozgur studied those of them endowed with a semi-symmetric non-metric connection in [2].

In this paper we study properties of hypersurfaces of almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

The paper is organized as follows: In Section 2, we give a brief introduction about an almost r-paracontact Riemannian manifold. In Section 3, we show that the induced connection on a hypersurface of an almost r-paracontact Riemannian manifold with semi-symmetric metric connection with respect to the normal is also a semi-symmetric metric connection. We find the characteristic properties of invariant, non-invariant and anti-invariant hypersurfaces of almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold with a positive definite metric g. If on M there exist a tensor field ϕ of type (1,1), r vector fields $\xi_1, \xi_2, \ldots, \xi_r$ (n > r), r 1-forms $\eta^1 \eta^2, \ldots, \eta^r$ such that

(2.1)
$$\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}, \quad \alpha, \beta \in (r) = \{1, 2, 3, \dots, r\},$$

(2.2)
$$\phi^2(X) = X - \eta^{\alpha}(X)\xi_{\alpha},$$

(2.3)
$$\eta^{\alpha}(X) = g(X, \xi_{\alpha}), \quad \alpha \in (r),$$

(2.4)
$$g(\phi X, \phi Y) = g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y),$$

where X and Y are vector fields on M and $a^{\alpha}b_{\alpha} \stackrel{\text{def}}{=} \Sigma_{\alpha}a^{\alpha}b_{\alpha}$, then the structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be an almost r-paracontact Riemannian structure on M and M is an almost r-paracontact Riemannian manifold [5]. From (2.1) through (2.4), we also have:

(2.5)
$$\phi(\xi_{\alpha}) = 0, \quad \alpha \in (r),$$

$$\eta^{\alpha} \circ \phi = 0, \quad \alpha \in (r),$$

$$\Phi(X, Y) \stackrel{\text{def}}{=} q(\phi X, Y) = q(X, \phi Y).$$

An almost r-paracontact Riemannian manifold M equipped with the Riemannian connection ∇^* with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of S-paracontact type if

(2.6)
$$\Phi(X,Y) = (\nabla_Y^* \eta^\alpha)(X)$$

for all $\alpha \in (r)$. An almost r-paracontact Riemannian manifold M with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of P-Sasakian type if it satisfies

$$(\nabla_Z^* \Phi)(X, Y) = -\Sigma_\alpha \eta^\alpha(X) [g(Y, Z) - \Sigma_\beta \eta^\beta(Y) \eta^\beta(Z)] -\Sigma_\alpha \eta^\alpha(Y) [g(X, Z) - \Sigma_\beta \eta^\beta(X) \eta^\beta(Z)]$$

for all vector fields X,Y and Z on M [4]. The conditions (2.6) and (2.7) are equivalent respectively to

$$\phi X = \nabla_X^* \xi_\alpha$$

and

$$(\nabla_Y^* \phi)(X) = -\sum_{\alpha} \eta^{\alpha}(X) [Y - \eta^{\alpha}(Y) \xi_{\alpha}] -[g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y)] \sum_{\beta} \xi_{\beta}$$

for all $\alpha \in (r)$. On the other hand, a semi-symmetric metric connection ∇ on M is defined as

(2.10)
$$\nabla_X Y = \nabla_X^* Y + \eta^{\alpha}(Y) X - g(X, Y) \xi_{\alpha}$$

for any $\alpha \in (r)$. Using (2.5) and (2.10) in (2.8) and (2.9), we get

(2.11)
$$\phi X = \nabla_X \xi_\alpha - X + \eta^\alpha(X) \xi_\alpha,$$

$$(\nabla_{Y}\phi)(X) = -\Sigma_{\alpha}\eta^{\alpha}(X)[Y - \eta^{\alpha}(Y)\xi_{\alpha}]$$

$$(2.12) \qquad -[g(X,Y) - \Sigma_{\alpha}\eta^{\alpha}(X)\eta^{\alpha}(Y)]\Sigma_{\beta}\xi_{\beta} - g(Y,\phi X)\xi_{\alpha}.$$

3. Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection

Let M^{n+1} be an almost r-paracontact Riemannian manifold with a positive definite metric g and M^n be a hypersurface immersed in M^{n+1} by the immersion $\tau: M^n \to M^{n+1}$. If τ_* denotes the differential of the immersion τ and \bar{X} is a vector field on M^n , then we shall identify \bar{X} and $\tau_*\bar{X}$. We denote the objects belonging to M^n by the mark of hyphen placed over them, e.g., $\bar{\phi}, \bar{X}, \bar{\eta}, \bar{\xi}$ etc.

Let N be the unit normal vector field to M^n . The induced metric \bar{g} on M^n is defined by

$$\bar{g}(\bar{X}, \bar{Y}) = g(\bar{X}, \bar{Y}).$$

Then we have [6]

(3.2)
$$g(\bar{X}, N) = 0 \text{ and } g(N, N) = 1.$$

If $\bar{\nabla}^*$ be the induced connection on the hypersurface from the Riemannian connection ∇^* in M^{n+1} with respect to the unit normal N, then the Gauss and Weingarten formulae are given respectively by

(3.3)
$$\nabla_{\bar{X}}^* \bar{Y} = \bar{\nabla}_{\bar{X}}^* \bar{Y} + h(\bar{X}, \bar{Y}) N,$$

$$\nabla_{\bar{X}}^* N = -H(\bar{X}),$$

where h is the second fundamental tensor and H is a tensor field of type (1,1) called the shape operator of M^n in M^{n+1} which satisfying

$$h(\bar{Y}, \bar{X}) = h(\bar{X}, \bar{Y}) = \bar{g}(H(\bar{X}), \bar{Y}).$$

If $\bar{\nabla}$ is the induced connection on the hypersurface from the semi-symmetric metric connection ∇ in M^{n+1} with respect to the unit normal N, then we have

(3.4)
$$\nabla_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + m(\bar{X},\bar{Y})N,$$

where m is a tensor field of type (0,2) of the hypersurface. From (2.10), we obtain

(3.5)
$$\nabla_{\bar{X}}\bar{Y} = \nabla_{\bar{Y}}^*\bar{Y} + \eta^{\alpha}(\bar{Y})\bar{X} - g(\bar{X},\bar{Y})\xi_{\alpha}, \quad \alpha \in (r).$$

From equations (3.3), (3.4) and (3.5), we get for each $\alpha \in (r)$

$$\bar{\nabla}_{\bar{X}}\bar{Y} + m(\bar{X},\bar{Y})N = \bar{\nabla}_{\bar{X}}^*\bar{Y} + h(\bar{X},\bar{Y})N + \eta^{\alpha}(\bar{Y})\bar{X} - g(\bar{X},\bar{Y})(\xi_{\alpha} + a_{\alpha}N),$$

where we put

$$\xi_{\alpha} = \bar{\xi}_{\alpha} + a_{\alpha} N.$$

By taking the tangential and normal parts respectively from the both sides, we get

$$\bar{\nabla}_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}^*\bar{Y} + \eta^{\alpha}(\bar{Y})\bar{X} - g(\bar{X},\bar{Y})\xi_{\alpha}, \quad \alpha \in (r)$$

and

(3.7)
$$m(\bar{X}, \bar{Y}) = h(\bar{X}, \bar{Y}) - a_{\alpha}g(\bar{X}, \bar{Y}).$$

Thus we get the following theorem:

Theorem 3.1. The connection induced on a hypersurface of an almost r-paracontact Riemannian manifold with semi-symmetric metric connection with respect to the unit normal is also a semi-symmetric metric connection.

From (3.4) and (3.7), we have

(3.8)
$$\nabla_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + \{h(\bar{X},\bar{Y}) - a_{\alpha}g(\bar{X},\bar{Y})\}N,$$

which is the Gauss formula for a semi-symmetric metric connection. From equation (3.5), we have

(3.9)
$$\nabla_{\bar{X}} N = \nabla_{\bar{X}}^* N + a_{\alpha} \bar{X},$$

where

$$(3.10) a_{\alpha} = \eta^{\alpha}(N).$$

From $(3.3)_2$ and (3.9), we have

$$\nabla_{\bar{X}} N = -H\bar{X} + a_{\alpha}\bar{X}.$$

which is the Weingarten formula with respect to semi-symmetric metric connection.

Now, suppose that $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is an almost r-paracontact Riemannian structure on M^{n+1} . Then every vector field X on M^{n+1} is decomposed as

$$X = \bar{X} + \lambda(X)N,$$

where λ is a 1-forms on M^{n+1} and \bar{X} is a vector field and N is a normal field on M^n . Then we have

$$\phi \bar{X} = \bar{\phi} \bar{X} + b(\bar{X})N,$$

$$\phi N = \bar{N} + KN,$$

where $\bar{\phi}$ is a tensor field of type (1,1), b is a 1-forms and K is a scalar function on the hypersurface M^n . Now, we define $\bar{\eta}^{\alpha}$ as

(3.14)
$$\bar{\eta}^{\alpha}(\bar{X}) = \eta^{\alpha}(\bar{X}), \quad \alpha \in (r).$$

Making use of (3.6), (3.10), (3.12) and (3.13), we obtain from (2.1) through (2.5)

(3.15)
$$b(\bar{N}) + K^2 = 1 - \Sigma_{\alpha}(a_{\alpha})^2,$$

(3.16)
$$Ka_{\alpha} + b(\bar{\xi}_{\alpha}) = 0, \quad \alpha \in (r),$$

(3.17)
$$\Phi(\bar{X}, \bar{Y}) = \bar{g}(\bar{\phi}\bar{X}, \bar{Y}) = \bar{g}(\bar{X}, \bar{\phi}\bar{Y}) = \bar{\Phi}(\bar{X}, \bar{Y}).$$

Making use of (3.1), (3.2), (3.5), (3.12) and (3.13), we have

$$0 = g(\bar{\phi}\bar{X}, N) = g(\phi\bar{X}, N) - b(\bar{X}) = g(\bar{X}, \phi N) - b(\bar{X}).$$

Hence we get

$$\bar{g}(\bar{X}, \bar{N}) = b(\bar{X}).$$

Differentiating covariantly (3.12) and (3.13) along M^n and making use of (3.8) and (3.11), we get

$$(\nabla_{\bar{Y}}\phi)(\bar{X}) = (\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) - b(\bar{X})H(\bar{Y}) + b(\bar{X})a_{\alpha}\bar{Y}$$

$$-(h(\bar{X},\bar{Y}) - a_{\alpha}g(\bar{X},\bar{Y}))\bar{N}$$

$$+[(\bar{\nabla}_{\bar{Y}}b)(\bar{X}) + h(\bar{\phi}\bar{X},\bar{Y}) - K(h(\bar{X},\bar{Y}) - a_{\alpha}g(\bar{X},\bar{Y}))]N,$$

$$(3.19)$$

$$(\nabla_{\bar{Y}}\phi)N = \bar{\nabla}_{\bar{Y}}\bar{N} + \bar{\phi}(H(\bar{Y})) - KH(\bar{Y}) - a_{\alpha}(\bar{\phi}\bar{Y} + K\bar{Y})$$

$$+ [\bar{Y}(K) - 2a_{\alpha}b(\bar{Y}) + 2h(\bar{Y},\bar{N})]N.$$

From (3.6) and (3.10), we have

$$(3.21) \nabla_{\bar{Y}} \xi_{\alpha} = \bar{\nabla}_{\bar{Y}} \bar{\xi}_{\alpha} - a_{\alpha} H(\bar{Y}) + (a_{\alpha})^2 \bar{Y} + [\bar{Y}(a_{\alpha}) + h(\bar{Y}, \bar{\xi}_{\alpha}) - a_{\alpha} \bar{\eta}^{\alpha}(\bar{Y})] N,$$

$$(3.22) \qquad (\nabla_{\bar{Y}}\eta^{\alpha})(\bar{X}) = (\bar{\nabla}_{\bar{Y}}\bar{\eta}^{\alpha})(\bar{X}) - a_{\alpha}h(\bar{X},\bar{Y}) + (a_{\alpha})^2\bar{g}(\bar{X},\bar{Y}).$$

From the identity $(\nabla_Z \Phi)(X, Y) = g((\nabla_Z \phi)(X), Y)$, making use of (3.17), (3.18) and (3.19), we have

$$\begin{array}{lcl} (\nabla_{\bar{Z}}\Phi)(\bar{X},\bar{Y}) & = & (\bar{\nabla}_{\bar{Z}}\bar{\Phi})(\bar{X},\bar{Y}) - b(\bar{X})h(\bar{Z},\bar{Y}) - b(\bar{Y})h(\bar{Z},\bar{X}) \\ (3.23) & & + a_{\alpha}b(\bar{X})\bar{g}(\bar{Z},\bar{Y}) + a_{\alpha}b(\bar{Y})\bar{g}(\bar{Z},\bar{X}). \end{array}$$

Theorem 3.2 ([4]). If M^n is an invariant hypersurface immersed in an almost r-paracontact Riemannian manifold M^{n+1} endowed with semi-symmetric metric connection with structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, then either

- (i) All ξ_{α} are tangent to M^n and M^n admits an almost r-paracontact Riemannian structure $\Sigma_1 = (\bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g})_{\alpha \in (r)}, (n-r > 2)$ or
- (ii) One of ξ_{α} (say, ξ_{r}) is normal to M^{n} and remaining ξ_{α} are tangent to M^{n} and M^{n} admits an almost (r-1)-paracontact Riemannian structure $\Sigma_{2} = (\bar{\phi}, \bar{\xi}_{i}, \bar{\eta}^{i}, \bar{g})_{i \in (r)}, (n-r > 1)$.

Proof. From (3.15) and (3.16) after computations similar to the computations in the proof of theorem 3.1 in [3] we obtain our theorem.

Corollary 3.1. If M^n is a hypersurface immersed in an almost r-paracontact Riemannian manifold M^{n+1} with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ endowed with a semi-symmetric metric connection, then the following statements are equivalent:

- (1) M^n is invariant.
- (2) The normal vector field N is an eigenvector of ϕ .
- (3) All ξ_{α} are tangent to M^n if and only if M^n admits an almost r-paracontact Riemannian structure Σ_1 , or one of ξ_{α} is normal and (r-1) remaining ξ_i are tangent to M^n if and only if M^n admits an almost (r-1)-paracontact Riemannian structure Σ_2 .

Theorem 3.3. If M^n is an invariant hypersurface immersed in an almost r-paracontact Riemannian manifold of P-Sasakian type endowed with semi-symmetric metric connection, then the induced almost r-paracontact Riemannian structure Σ_1 or (r-1)-paracontact Riemannian structure Σ_2 are also of P-Sasakian type.

Proof. Making use of (3.1), (3.14), (3.17), (3.22) and (3.23), we can observe that the conditions (2.11) and (2.12) are satisfied for both Σ_1 and Σ_2 .

On the other hand, we have the following.

Lemma 3.1.

$$\bar{\nabla}_{\bar{X}}(\mathrm{trace}\bar{\phi}) = \mathrm{trace}(\bar{\nabla}_{\bar{X}}\bar{\phi}).$$

Proof. Let $\{e_1, e_2, \ldots, e_n\}$ be an orthogonal basis of TM^n and

$$\operatorname{trace}\bar{\phi} \stackrel{\text{def}}{=} \Sigma_a(\bar{\phi}(e_a), e_a),$$

where $a \in (n-1)$, then after computations similar to the computations in the proof of Lemma 4.1 in [3] we easily obtain our lemma.

Theorem 3.4. Let M^n be a non-invariant hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with the semi-symmetric metric connection with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ satisfying $\nabla \phi = 0$ along M^n . Then M^n is totally geodesic if and only if $(\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) + a_{\alpha}\bar{g}(\bar{X},\bar{Y})\bar{N} +$ $a_{\alpha}b(\bar{X})\bar{Y}=0.$

Proof. From (3.19) we have

$$(3.24) \quad (\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) - (h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{X},\bar{Y}))\bar{N} - b(\bar{X})H(\bar{Y}) + a_{\alpha}b(\bar{X})\bar{Y} = 0,$$

$$(\bar{\nabla}_{\bar{Y}}b)(\bar{X}) + a_{\alpha}\bar{g}(\bar{X},\bar{Y}) + h(\bar{Y},\bar{\phi}\bar{X}) - Kh(\bar{X},\bar{Y}) = 0.$$

If M^n is totally geodesic, then h=0 and H=0, so we get from (3.24),

$$(\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) + a_{\alpha}\bar{g}(\bar{X},\bar{Y})\bar{N} + a_{\alpha}b(\bar{X})\bar{Y} = 0.$$

Conversely, if $(\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) + a_{\alpha}\bar{q}(\bar{X},\bar{Y})\bar{N} + a_{\alpha}b(\bar{X})\bar{Y} = 0$, then

(3.25)
$$h(\bar{X}, \bar{Y})\bar{N} + b(\bar{X})H(\bar{Y}) = 0.$$

Making use of (3.18), we have

(3.26)
$$b(\bar{Z})h(\bar{X},\bar{Y}) + b(\bar{X})h(\bar{Y},\bar{Z}) = 0.$$

Using (3.25), we get

(3.27)
$$b(\bar{X})h(\bar{Y},\bar{Z}) = b(\bar{Y})h(\bar{X},\bar{Z}).$$

From (3.26) and (3.27), we get $b(\bar{Z})h(\bar{X},\bar{Y})=0$ which gives that h=0 as $b \neq 0$. Using h = 0 in (3.25), we get H = 0. Thus, h = 0 and H = 0. Hence M^n is totally geodesic.

Also we have the following:

Theorem 3.5. Let M^n be a non-invariant hypersurface of an almost r-para $contact\ Riemannian\ manifold\ M^{n+1}\ with\ semi-symmetric\ metric\ connection$ satisfying $\nabla \phi = 0$ along M^n and trace $\bar{\phi} = constant$, then M^n is totally umbil-

Proof. From (3.24) we have

$$\bar{q}((\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}),\bar{X}) = 2h(\bar{X},\bar{Y})b(\bar{X}) - 2a_{\alpha}(\bar{X})q(\bar{X},\bar{Y})$$

and

$$\bar{\nabla}_{\bar{X}}(\mathrm{trace}\bar{\phi}) = \Sigma_a \bar{g}(\bar{\nabla}_{\bar{X}}\bar{\phi}(e_a), e_a).$$

Using Lemma 3.1, we get

$$h(\bar{X}, \bar{N}) = a_{\alpha} \Sigma_{a} b(e_{a}) \bar{q}(\bar{X}, e_{a}),$$

where $\bar{N} = \Sigma_a b(e_a) e_a$, which implies that M^n is totally umbilical.

Now, let M^{n+1} be an almost r-paracontact Riemannian manifold of S-paracontact type. Then from (2.8), (3.12) and (3.21), we get

$$(3.28) \qquad \bar{\phi}\bar{X} = \bar{\nabla}_{\bar{X}}\bar{\xi}_{\alpha} - a_{\alpha}H(\bar{X}) + (a_{\alpha})^{2}(\bar{X}) - \bar{X} + \bar{\eta}^{\alpha}(\bar{X})\bar{\xi}_{\alpha}, \quad \alpha \in (r),$$

(3.29)
$$b(\bar{X}) = \bar{X}(a_{\alpha}) + h(\bar{X}, \bar{\xi}_{\alpha}), \quad \alpha \in (r).$$

Making use of (3.29), we have that if M^n is totally geodesic, then $a_{\alpha} = 0$ and h = 0. Hence b = 0, that is, M^n is invariant. Thus we have:

Proposition 3.1. If M^n is totally geodesic hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with the semi-symmetric metric connection of S-paracontact type with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ and all ξ_{α} are tangent to M^n , then M^n is invariant.

Theorem 3.6. If M^n is an anti-invariant hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with the semi-symmetric metric connection of S-paracontact type with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, then $\bar{\nabla}_{\bar{X}} \xi_{\alpha} = \phi^2 \bar{X}$.

Proof. If M^n is anti-invariant, then $\bar{\phi} = 0$ and $a_{\alpha} = 0$ and also from (3.28) we have

$$\bar{\nabla}_{\bar{X}}\bar{\xi}_{\alpha} = \bar{X} - \bar{\eta}^{\alpha}(\bar{X})\bar{\xi}_{\alpha}, \quad \alpha \in (r).$$

That is,

$$\bar{\nabla}_{\bar{X}}\xi_{\alpha} = \phi^2 \bar{X}.$$

Now, let M^{n+1} be an almost r-paracontact Riemannian manifold endowed with the semi-symmetric metric connection of P-Sasakian type. Then from (2.11) and (3.19), we have

$$(\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) - [h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{X},\bar{Y})]\bar{N} - b(\bar{X})H(\bar{Y}) + a_{\alpha}b(\bar{X})\bar{Y}$$

$$(3.30) = -\sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})[\bar{Y} - \bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}] - [\bar{g}(\bar{X},\bar{Y}) - \sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})]\sum_{\beta}\bar{\xi}_{\beta}.$$

Theorem 3.7. Let M^{n+1} be an almost r-paracontact Riemannian manifold of P-Sasakian type with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ endowed with the semi-symmetric metric connection and let M^n be a hypersurface immersed in M^{n+1} such that none of ξ_{α} is tangent to M^n . Then M^n is totally geodesic if and only if

$$\begin{split} &(\bar{\nabla}_{\bar{Y}}\bar{\phi})(\bar{X}) + a_{\alpha}b(\bar{X})\bar{Y} - a_{\alpha}\bar{g}(\bar{X},\bar{Y})\bar{N} \\ (3.31) &= -\Sigma_{\alpha}\bar{\eta}^{\alpha}(\bar{X})[\bar{Y} - \bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}] - [\bar{g}(\bar{X},\bar{Y}) - \Sigma_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})]\Sigma_{\beta}\bar{\xi}_{\beta}. \end{split}$$

Proof. If (3.31) is satisfied, then from (3.30), we get $h(\bar{X}, \bar{Y})\bar{N} + b(\bar{X})H(\bar{Y}) = 0$. Since $b \neq 0$ so that by use of Theorem 3.4, $h(\bar{X}, \bar{Y}) = 0$. Hence M^n is totally geodesic. Conversely, Let M^n is totally geodesic, that is $h(\bar{X}, \bar{Y}) = 0$, H = 0, then from (3.29) we have b = 0, which is a contradiction. Hence ξ_{α} are not tangent to M^n .

Acknowledgement. The authors are grateful to the referee for his/her kind suggestions.

References

- [1] M. Ahmad, J.-B. Jun, and A. Haseeb, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection, Bull. Korean Math. Soc. **46** (2009), no. 3, 477–487.
- [2] M. Ahmad and C. Ozgur, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a semi-symmetric non-metric connection, Results in Mathematics, Ac-
- [3] A. Bucki, Hypersurfaces of almost r-paracontact Riemannian manifolds, Tensor (N.S.) **48** (1989), no. 3, 245–251.
- ____, Almost r-paracontact structures of P-Sasakian type, Tensor (N.S.) 42 (1985), no. 1, 42-54.
- [5] A. Bucki and A. Miernowski, Almost r-paracontact structures, Ann. Univ. Mariae Curie-Sklodowska Sect. A 39 (1985), 13–26.
- [6] B. Y. Chen, Geometry of Submaifolds, Marcel Dekker, New York, 1973.
- [7] A. Friedmann and J. A. Schouten, Über die geometrie der halbsymmetrischen ubertrangung, Math. Z. 21 (1924), no. 1, 211-223.
- [8] J. A. Schouten, Ricci Calculus, Springer, 1954.
- [9] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.

Jae-Bok Jun

DEPARTMENT OF MATHEMATICS

College of Natural Science

KOOK-MIN UNIVERSITY

SEOUL 136-702, KOREA

E-mail address: jbjun@kookmin.ac.kr

Mobin Ahmad

DEPARTMENT OF MATHEMATICS

Integral University

Kursi-Road, Lucknow-226026, India $E ext{-}mail\ address: mobinahmad@rediffmail.com}$