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NOTES ON (LCS)n-MANIFOLDS SATISFYING

CERTAIN CONDITIONS

Shyam Kishor and Pushpendra Verma

Abstract. The object of the present paper is to study the properties of

conharmonically flat (LCS)n-manifold, special weakly Ricci symmetric
and generalized Ricci recurrent (LCS)n-manifold. The existence of such

a manifold is ensured by non-trivial example.

1. Introduction

As a generalization of LP-Sasakian manifold ([17, 18]), Shaikh ([25, 26]) in-
troduced the notion of (LCS)n-manifold along with their existence and ap-
plications to the general theory of relativity and cosmology. Moreover, Shaikh
and his coauthors ([25–27]) studied (LCS)n-manifolds by imposing various cur-
vature restrictions. The (LCS)n-manifolds have also been studied by Atceken
[2], Hui et al. ([3, 5, 11–13]), Narain and Yadav [20], Prakasha [22], Sreenivasa
et al. [30], Venkatesha and Kumar [31], Yadav et al. [32]. Certain conditions
on trans-Sasakian manifolds were studied by S. K. Chaubey [6].

Locally symmetric manifolds were weakened by many geometers in different
extents. In those, the idea of recurrent manifolds was introduced by Walker in
1950. On the other hand, De and Guha [7] introduced generalized recurrent
manifold (GKn) with the non-zero 1-form A and another non-zero associated
1-form B. If the associated 1-form B becomes zero, then the manifold GKn is
reduced to a recurrent manifold (Kn) introduced by Ruse [23].

The notion of recurrent manifolds has been generalized by various authors
as Ricci recurrent manifolds (Rn) by Patterson [21], 2-recurrent manifolds by
Lichnerowicz [16], projective 2-recurrent manifolds by Ghosh [10] and general-
ized Ricci recurrent manifold (GRn) by De et al. [8], and Kim et al. [15].

Recently, semi generalized recurrent condition was introduced and studied
on Lorentzian α-Sasakian manifolds and P-Sasakian manifolds by Dey and
Bhattacharyya [9] and Singh et al. [29], respectively.
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Definition. A Riemannian manifold (M, g) is said to be a semi-generalized
Ricci recurrent manifold if

(∇XS)(Y,Z) = A(X)S(Y, Z) +B(X)g(Y, Z)

holds, where A and B are 1-forms associated with the vector fields P1, P2,
respectively, on M , i.e.,

A(X) = g(X,P1); B(X) = g(X,P2).

Our work is structured as follows: In Section 2, we give a brief information
about (LCS)n-manifold. In Section 3, we study conharmonically flat (LCS)n-
manifold. Section 4 deals with special weakly Ricci-symmetric (LCS)n-man-
ifold. In Section 5, we study generalized Ricci-recurrent (LCS)n-manifold.

2. Preliminaries

A (2n+ 1)-dimensional Lorentzian manifold M is a smooth connected para-
compact Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0, 2) such that for each point p ∈M ,
the tensor gp : TpM×TpM → R is a non-degenerate inner product of signature
(−,+, . . . ,+), where TpM denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector v ∈ TpM is said to be time like (resp.,
non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp, ≤ 0,= 0, > 0).

Definition. In a Lorentzian manifold (M, g) a vector field P defined by

g(X,P ) = A(X)

for any X on M, is said to be a concircular vector field if

(DXA)(Y ) = α{g(X,Y ) + ω(X)A(Y )},
where α is a non-zero scalar and ω is a closed 1-form and D denotes the operator
of covariant differentiation with respect to the Lorentzian metric g.

Let M be a (2n+ 1)-dimensional Lorentzian manifold admitting a unit time
like concircular vector field ξ called the characteristic vector field of the mani-
fold. Then we have

g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(X, ξ) = η(X),

the equation of the following form holds:

(2.1) (DXη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, α 6= 0

for any vector fields X, Y on M , where D denotes the operator of covariant
differentiation with respect to the Lorentzian metric g and α is a non-zero
scalar function satisfying

DXα = (Xα) = dα(X) = ρη(X),
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ρ is a certain scalar function given by ρ = −(ξα). Let us take

(2.2) φX = X(α) =
1

α
DXξ.

Then by virtue of (2.1) and (2.2), we have

φX = X + η(X)ξ,

from which it follows that φ is a symmetric (1, 1) tensor field called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the
unit time like concircular vector field ξ, its associated 1-form η and an (1, 1)
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly,
(LCS)n-manifold) [24]. Especially, if we take α = 1, then we obtain the LP-
Sasakian structure of Matsumoto [17]. This leads to the following expression:

(2.3) (DXφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X}
for smooth functions α of M . If α = 0, then (2.3) gives

(DXφ)(Y ) = 0.

From (2.3), we conclude that

(2.4) DXξ = α[X + η(X)ξ].

The following relations hold in an (LCS)n-manifold (n > 2) ([24]):

(2.5) φ2 = I + η ◦ ξ,

(2.6) η(ξ) = −1, φξ = 0, η ◦ φ = 0, g(X, ξ) = η(X),

(2.7) g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

(2.8) R(X,Y )Z = φR(X,Y )Z + (α2 − ρ){g(Y,Z)η(X)− g(X,Z)η(Y )}ξ,

(2.9) η(R(X,Y )Z) = (α2 − ρ){g(Y, Z)η(X)− g(X,Z)η(Y )},

(2.10) R(X,Y )ξ = (α2 − ρ){η(Y )X − η(X)Y },

(2.11) R(ξ,X)Y = (α2 − ρ){g(X,Y )ξ − η(Y )X},

(2.12) R(ξ,X)ξ = (α2 − ρ)[η(X)ξ +X],

(2.13) S(φX, φY ) = S(X,Y ) + 2n(α2 − ρ)η(X)η(Y ),

(2.14) S(X, ξ) = 2n(α2 − ρ)η(X),

(2.15) QX = 2n(α2 − ρ)X,

(2.16) Qξ = 2n(α2 − ρ)ξ.

A Riemannian manifold M is said to be η-Einstein if its Ricci tensor S is of
the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y )
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for arbitrary vector fields X and Y , where a and b are smooth functions on
(M, g) [4].

In 1976, Mishra and Pandey [19] defined a tensor of type (1, 3) on a Rie-
mannian manifold as

(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ],(2.17)

so that (X,Y, Z, U) = g((X,Y )Z,U) = (Z,U,X, Y ), where Q is the Ricci
operator defined by S(X,Y ) = g(QX,Y ) and S is the Ricci tensor for arbitrary
vector fieldsX,Y and Z. Such a tensor field is known as conharmonic curvature
tensor. Asghari and Taleshian [1], Khan [14] and other geometers studied the
properties of conharmonic curvature tensor.

3. Conharmonically flat (LCS)n-manifolds

Theorem 3.1. A conharmonically flat (LCS)n-manifold of dimension (2n+1)
is an η-Einstein manifold.

Proof. In view of = 0, (2.17) becomes

(3.1) R(X,Y )Z =
1

2n− 1
[S(Y,Z)X−S(X,Z)Y + g(Y,Z)QX− g(X,Z)QY ],

replacing Z by ξ in (3.1) and then using (2.6), (2.10) and (2.14), we obtain

(2n− 1)(α2 − ρ)η(Y )ξ + (2n− 1)(α2 − ρ)Y = 4n(α2 − ρ)η(Y )ξ

+ 2n(α2 − ρ)Y +QY.

Again substituiting X = ξ in the above equation and using (2.5), (2.6) and
(2.16), we have

QY = (−1− 2n)(α2 − ρ)η(Y )ξ − (α2 − ρ)Y,

which gives

S(Y,Z) = J1g(Y,Z) + J2η(Y )η(Z),

where

J1 = −(α2 − ρ), J2 = (−1− 2n)(α2 − ρ). �

4. On special weakly Ricci-symmetric (LCS)n-manifolds

Theorem 4.1. An (LCS)n-manifold (M, g) of dimension (2n+ 1) can not be
a special weakly Ricci-symmetric manifold (SWRS)2n+1.

Proof. A (2n + 1)-dimensional (LCS)n-manifold (M, g) is called a special
weakly Ricci-symmetric manifold (SWRS)2n+1 if

(4.1) (DXS)(Y, Z) = 2π(X)S(Y, Z) + π(Y )S(X,Z) + π(Z)S(X,Y ),
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where π is a 1-form and is defined by π(X) = g(X, ρ) for associated vector field
ρ ([14,28]). Taking Z = ξ in (4.1) and using (2.6) and (2.14), we get

(DXS)(Y, ξ) = 4n(α2 − ρ)π(X)η(Y ) + 2n(α2 − ρ)π(Y )η(X)

+ π(ξ)S(X,Y ).(4.2)

We also know that

(4.3) (DXS)(Y, ξ) = DXS(Y, ξ)− S(DXY, ξ)− S(Y,DXξ).

In consequence of (2.4) and (2.14), (4.3) becomes

(DXS)(Y, ξ) = DX{2n(α2 − ρ)η(Y )} − 2n(α2 − ρ)η(DXY )

− S(Y, α(X + η(X)ξ)).(4.4)

Equation (4.4) with equations (2.6), (2.1), (2.14), (4.2) and X = ξ becomes

(4.5) 6n(α2 − ρ)π(ξ)η(Y )− 2n(α2 − ρ)π(Y ) = 0,

putting Y = ξ in (4.5) and using (2.6), we obtain

−8n(α2 − ρ)π(ξ) = 0,

which implies

(4.6) π(ξ) = 0.

In view of (4.6), (4.5) gives

π(Y ) = 0,

which is inadmissible. �

5. Generalized Ricci-Recurrent (LCS)n-manifold

Theorem 5.1. In a generalized Ricci-recurrent (LCS)n-manifold of dimension
(2n+1), the associated vector fields of the 1-forms A and B are in the opposite
or in same direction, according as (α2− ρ) is positive or negative, respectively.

Proof. A non-flat Riemannian manifold M of dimension greater than two is
called a generalized Ricci-recurrent manifold [8] if its Ricci tensor S satisfies
the condition

(5.1) (DXS)(Y, Z) = A(X)S(Y,Z) +B(X)g(Y,Z),

where D is the Riemannian connection of the Riemannian metric g and A, B
are 1-forms associated with the vector fields P1, P2, respectively, on M , i.e.,

A(X) = g(X,P1); B(X) = g(X,P2)

for arbitrary vector fields X, Y and Z. If the 1-form B vanishes identically,
the manifold M is reduced to the well known Ricci-recurrent manifold [21].

Let M be a generalized Ricci-recurrent (LCS)n-manifold. It is known that

(5.2) (DXS)(Y,Z) = XS(Y,Z)− S(DXY Z)− S(Y,DXZ)
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for arbitrary vector fields X, Y and Z. From equations (5.1) and (5.2), we get

A(X)S(Y,Z) +B(X)S(Y,Z) = XS(Y, Z)− S(DXY, Z)− S(Y,DXZ),

replacing Z by ξ in above equation and using (2.5), (2.6), (2.4) and (2.14), we
get

(5.3) [2n(α2 − ρ)A(X) +B(X)]η(Y ) + αS(Y, φ2X) = 2n(α2 − ρ)(DXη)(Y ).

In consequence of (2.1), (5.3) becomes

[2n(α2 − ρ)A(X) +B(X)]η(Y ) + αS(Y, φ2X)

= 2n(α2 − ρ){α[g(X,Y ) + η(X)η(Y )]},

putting Y = ξ in above equation and using (2.6), we obtain

(5.4) 2n(α2 − ρ)A(X) +B(X) = 0. �

Theorem 5.2. If a generalized Ricci-recurrent (LCS)n-manifold of dimension
(2n+1) admits a cyclic Ricci tensor, then the manifold is an Einstein manifold,
provided A(ξ) 6= 0.

Proof. Let us consider that a generalized Ricci-recurrent (LCS)n-manifold M
admits a cyclic Ricci tensor S, i.e.,

(5.5) (DXS)(Y,Z) + (DY S)(Z,X) + (DZS)(X,Y ) = 0

for arbitrary vector fields X, Y and Z. In view of (5.1), (5.5) follows that

A(X)S(Y,Z) +B(X)g(Y,Z) +A(Y )S(Z,X)

+B(Y )g(Z,X) +A(Z)S(X,Y ) +B(Z)g(X,Y ) = 0,(5.6)

replacing Z by ξ in (5.6) and using (2.7) and (2.16), we get

[2n(α2 − ρ)A(X) +B(X)]η(Y ) + [2n(α2 − ρ)A(Y )

+B(Y )]η(X) +A(ξ)S(X,Y ) +B(ξ)g(X,Y ) = 0.(5.7)

In view of (5.4), (5.7) gives

A(ξ)S(X,Y ) = −B(ξ)g(X,Y ),

which is an Einstein manifold, provided A(ξ) 6= 0. �

6. Example of (LCS)n-manifolds

Example 6.1. We consider the 3-dimensional manifold M = {(X,Y, Z) ∈ R3},
where (X,Y, Z) are the standard coordinates in R3. Let {ε1, ε2, ε3} be a linearly
independent global frame on M given by

ε1 = ε−Z(
∂

∂X
+ Y

∂

∂Y
), ε2 = ε−Z ∂

∂Y
, ε3 = ε−2Z ∂

∂Z
.

Let g be the Lorentzian metric defined by g(ε1, ε3) = g(ε2, ε3) = g(ε1, ε2) =
0, g(ε1, ε1) = g(ε2, ε2) = 1, g(ε3, ε3) = −1. Let η be the 1-form defined by
η(U) = g(U, ε3) for any U ∈ χ(M). Let φ be the (1, 1) tensor field defined by
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φε1 = ε1, φε2 = ε2, φε3 = 0. Then using the linearity of φ and g we have
η(ε3) = −1, φ2U = U + η(U)ε3 and g(φU, φW ) = g(U,W ) + η(U)η(W ) for any
U,W ∈ χ(M). Thus for ε3 = ξ, (φ, ξ, η, g) defines a Lorentzian paracontact
structure on M.

Let D be the Levi-Civita connection with respect to the Lorentzian metric
g and R be the curvature tensor of g. Then we have

[ε1, ε1] = −ε−Zε2, [ε1, ε3] = ε−2Zε1, [ε2, ε3] = ε−2Zε2.

Taking ε3 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

Dε1ε3 = ε−2Zε1, Dε1ε2 = 0, Dε1ε1 = ε−2Zε3,

Dε2ε3 = ε−2Zε2, Dε2ε2 = ε−2Zε3 − ε−Zε1, Dε2ε1 = ε−2Zε2,

Dε3ε3 = 0, Dε3ε2 = 0, Dε3ε1 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is an (LCS)3 structure
on M . Consequently M3(φ, ξ, η, g) is an (LCS)3-manifold with α = ε−2Z 6= 0
such that (Xα) = ρη(X), where ρ = 2ε−4Z . Using the above relations, we
can easily calculate the non-vanishing components of the curvature tensor as
follows:

R(ε2, ε3)ε3 = ε−4Zε2, R(ε1, ε3)ε3 = ε−4Zε1, R(ε1, ε2)ε2 = ε−4Zε1 − ε−2Zε1,

R(ε2, ε3)ε2 = ε−4Zε3, R(ε1, ε3)ε1 = ε−4Zε3, R(ε1, ε2)ε1 = −ε−4Zε2 + ε−2Zε2

and the components which can be obtained from these by the symmetry prop-
erties from which, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows:

S(ε1, ε1) = 2ε−4Z − ε−2Z , S(ε2, ε2) = 2ε−4Z − ε−2Z , S(ε3, ε3) = 2ε−4Z .

Since {ε1, ε2, ε3} is a frame field for (LCS)3-manifold, any vector fields X,Y ∈
χ(M) can be written as:

X = a1ε1 + b1ε2 + c1ε3

and

Y = a2ε1 + b2ε2 + c2ε3,

where ai, bi, ci ∈ R+ (the set of positive real numbers), i = 1, 2, 3, such that
c1c2 6= a1a2 + b1b2. Hence

S(X,Y ) = 2(a1a2 + b1b2 + c1c2)ε−4Z − (a1a2 + b1b2)ε−2Z

and

g(X,Y ) = a1a2 + b1b2 − c1c2.
By virtue of the above we have the following:

(Dε1S)(X,Y ) = (a1c2 + a2c1)(ε−4Z − 4ε−6Z),

(Dε2S)(X,Y ) = (b1c2 + b2c1)(ε−4Z − 4ε−6Z)
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and
(Dε3S)(X,Y ) = 0.

We shall show that this (LCS)3-manifold is a generalized Ricci recurrent, i.e.,
it satisfies the relation (5.1). Let us now consider the 1-forms:

A (ε1) =
(a1c2 + a2c1)

2(a1a2 + b1b2 + c1c2)
,

A (ε2) =
(b1c2 + b2c1)

2(a1a2 + b1b2 + c1c2)
,

A (ε3) = 0,

B (ε1) =
ε−2Z(a1c2 + a2c1)[(a1a2 + b1b2)

(
1− 8ε−4Z

)
− 8c1c2ε

−4Z ]

2(a1a2 + b1b2 + c1c2) (a1a2 + b1b2 − c1c2)
,

B (ε2) =
ε−2Z(b1c2 + b2c1)[(a1a2 + b1b2)

(
1− 8ε−4Z

)
− 8c1c2ε

−4Z ]

2(a1a2 + b1b2 + c1c2) (a1a2 + b1b2 − c1c2)
,

B (ε3) = 0

at any point X ∈ M . In our M3, (5.1) is reduced with these 1-forms to the
following equations:

(1) (Dε1S)(X,Y ) = A (ε1)S(X,Y ) +B (ε1) g(X,Y ),
(2) (Dε2S)(X,Y ) = A (ε2)S(X,Y ) +B (ε2) g(X,Y ),
(3) (Dε3S)(X,Y ) = A (ε3)S(X,Y ) +B (ε3) g(X,Y ).

This shows that the manifold under consideration is a generalized Ricci recur-
rent (LCS)3-manifold in which the associated vector fields of the 1-forms A
and B are in same direction.
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