Kangweon-Kyungki Math. Jour. 7 (1999), No. 2, pp. 235–244

ON THE NONHOLONOMIC FRAMES IN A GENERALIZED 2-DIMENSIONAL RIEMANNIAN MANIFOLD X₂

Jung Mi Ko

ABSTRACT. We will derive some identities related to p-scalars, p-vectors, and non-holonomic frames in a generalized 2-dimensional Riemannian manifold X_2 .

1. Introduction

Let X_2 be a generalized 2-dimensional Riemannian manifold referred to a real coordinate system x^{μ}_{λ} and endowed with a real quadratic tensor $g_{\lambda\mu}$, which may be split into its symmetric part $h_{\lambda\mu}$ and skew symmetric part $k_{\lambda\mu}$:

(1.1)
$$g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu}$$

In this paper, we assume that

(1.2)
$$\mathfrak{g} = Det((g_{\lambda\mu}))$$
, $\mathfrak{h} = Det((h_{\lambda\mu})) < 0$, $\mathfrak{k} = Det((k_{\lambda\mu}))$

According to (1.2), there exists a unique symmetric tensor $h_{\lambda\mu}$ defined by

(1.3)
$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}$$

The tensors $h_{\lambda\mu}$ and $h^{\lambda\nu}$ will serve for raising or lowering indices of tensor quantities in X_2 in the usual manner.

Received June 12, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 53A45, 83C05.

Key words and phrases: nonholonomic frame, p-vector.

This paper was supported by Kangnung National University Overseas Research Foundation, 1997-1998.

The purpose of the present paper is, in the first, to study the properties of the p-scalars H and the corresponding eigenvectors P^{ν} in X_2 , defined by

(1.4)
$$(Hh_{\nu\lambda} - {}^{(p)}k_{\nu\lambda})P^{\nu} = 0, \qquad (H : \text{a scalar})$$

Finally, we introduce a nonholonomic frame to X_2 and find expressions for the tensor $h_{\lambda\mu}$ and ${}^{(p)}k_{\nu\lambda}$ in terms of the p-vectors P^{ν} .

2. Preliminaries

This section is a brief collection of definitions, notations, and basic results which are needed in our subsequent considerations.

(2.1)
$$g = \frac{\mathfrak{g}}{\mathfrak{h}}, \qquad k = \frac{\mathfrak{k}}{\mathfrak{h}}$$

(2.3)
$${}^{(0)}k_{\lambda}^{\nu} = \delta_{\lambda}^{\nu}, \; {}^{(p)}k_{\lambda}^{\nu} = {}^{(p-1)}k_{\lambda}^{\alpha}k_{\alpha}^{\nu} \qquad (p = 1, 2, \cdots)$$

(2.4)
$$\mathfrak{k} = \Omega^2 > 0, \ k = \frac{\Omega^2}{\mathfrak{h}} < 0$$
 where $\Omega = k_{12}$

(2.5a)
$${}^{(p)}k_{\lambda\mu} = (-k)^{\frac{p}{2}}h_{\lambda\mu} \quad \text{if p is even}$$

(2.5b)
$${}^{(p)}k_{\lambda\mu} = (-k)^{\frac{p-1}{2}}k_{\lambda\mu} \quad \text{if p is odd}$$

Furthermore, we use $\mathcal{E}^{\lambda\mu}(\mathfrak{e}_{\lambda\mu})$ as the contravariant (covariant) indicators of weight 1(-1).

The eigenvalue M and the corresponding eigenvector a^{ν} in X_2 defined by

(2.6)
$$(Mh_{\nu\lambda} - k_{\nu\lambda})a^{\nu} = 0 \qquad (M : \text{a scalar})$$

are called basic scalars and basic vectors of X_2 , respectively.

There are exactly two linearly independent basic vectors a^{ν} satisfying (2.6), where the corresponding basic scalars M are given by

(2.7)
$$M = M_1 = -M_2 = \sqrt{-k}$$

3. P - Scalars

LEMMA 3.1. We have

$$(3.1) \qquad \qquad \mathfrak{k}>0 \ , \ \ k=\frac{\mathfrak{k}}{\mathfrak{h}}<0$$

Proof. Since $k_{\lambda\mu}$ is skew symmetric, $\mathfrak{k} = (k_{12})^2 = \Omega^2 > 0$

LEMMA 3.2. We have

(3.2)
$$A(H) \stackrel{def}{=} Det((Hh_{\nu\lambda} - {}^{(p)}k_{\nu\lambda})) \\ = \begin{cases} \mathfrak{h}(H - (-k)^{\frac{p}{2}})^2, & \text{if } p \text{ is even} \\ \mathfrak{h}(H^2 + k^p), & \text{if } p \text{ is odd.} \end{cases}$$

Proof. (case 1) p is even:

$$2A(H) = 2Det((Hh_{\nu\lambda} - {}^{(p)}k_{\mu\beta}))$$

= $\mathcal{E}^{\omega\mu}\mathcal{E}^{\alpha\beta}(Hh_{\omega\alpha} - {}^{(p)}k_{\omega\alpha})(Hh_{\mu\beta} - {}^{(p)}k_{\mu\beta})$
= $2H^2\mathfrak{h} - 2H\mathcal{E}^{\omega\mu}\mathcal{E}^{\alpha\beta}h_{\omega\alpha}{}^{(p)}k_{\mu\beta} + 2Det(({}^{(p)}k_{\lambda\mu}))$
= $2H^2\mathfrak{h} - 2H(2(-k)^{\frac{p}{2}}\mathfrak{h}) + 2k^2\mathfrak{h}$
= $2\mathfrak{h}(H - (-k)^{\frac{p}{2}})^2$

(case 2) p is odd:

$$2A(H) = 2Det((Hh_{\nu\lambda} - {}^{(p)}k_{\nu\lambda}))$$

= $\mathcal{E}^{\omega\mu}\mathcal{E}^{\alpha\beta}(Hh_{\omega\alpha} - {}^{(p)}k_{\omega\alpha})(Hh_{\mu\beta} - {}^{(p)}k_{\mu\beta})$
= $2H^2\mathfrak{h} - 2H\mathcal{E}^{\omega\mu}\mathcal{E}^{\alpha\beta}h_{\omega\alpha}{}^{(p)}k_{\mu\beta} + 2Det(({}^{(p)}k_{\lambda\mu}))$
= $2\mathfrak{h}(H^2 + k^p)$

THEOREM 3.3. The eigenvalues H of (2.4) are given by

(3.3)
$$\begin{cases} H = (-k)^{\frac{p}{2}}, & p \text{ is even} \\ H = \pm (-k)^{\frac{p}{2}}, & p \text{ is odd} \end{cases}$$

Proof. The existence of the above case is clear from Lemma(3.1). A necessary and sufficient condition for the existence of a nontrivial solution P^{ν} of (1.4) is A(H) = 0. According to Lemma(3.2), the result follows directly.

REMARK. In case that p is even, $H = (-k)^{\frac{P}{2}}$ is a double root of A(H) = 0.

THEOREM 3.4. Every basic vector a_i^{ν} of X_2 is also p-vector of X_2 .

Proof. (case 1) p is even: From (2.5a), we have

$${}^{(p)}k_{\nu\lambda}a_{i}^{\nu} = (-k)^{\frac{p}{2}}h_{\nu\lambda}a_{i}^{\nu} = M^{p}h_{\nu\lambda}a_{i}^{\nu}$$

where $M = \sqrt{-k}$.

(case 2) p is odd: From (2.5b), we have

$${}^{(p)}k_{\nu\lambda}a_{i}^{\nu} = (-k)^{\frac{p-1}{2}}k_{\nu\lambda}a_{i}^{\nu} = (-k)^{\frac{p-1}{2}}Mh_{\nu\lambda}a_{i}^{\nu} = M^{p}h_{\nu\lambda}a_{i}^{\nu}$$

where $M = M_1 = M_2 = \sqrt{-k}$ In both cases, we have

$${}^{(p)}k_{\nu\lambda}a_i^{\nu} = Hh_{\nu\lambda}a_i^{\nu}$$

where $H = M^p$.

Therefore, a_i^{ν} is the p-vector P^{ν} with p - scalar H.

THEOREM 3.5. In case that p is even, every vector of X_2 is a p-vector of X_2 .

Proof. From (2.5a), the relation (1.4) may be written as

(3.4)
$$(H - (-k)^{\frac{p}{2}})h_{\nu\lambda}P^{\nu} = 0$$

Since $\mathfrak{h} \neq 0$, (3.4) holds for every vector P^{ν} with $H = (-k)^{\frac{p}{2}}$.

4. P-Vectors

In this section, we shall study and derive several properties of p-vectors given by (1.4).

THEOREM 4.1. In case that p is odd, the p-vector P^{ν} is a null vector.

Proof. Since the tensor ${}^{(p)}k_{\lambda\mu}$ is skew-symmetric and from (1.4), for i = 1, 2,

$$Hh_{\nu\lambda}P_i^{\nu}P_i^{\lambda} = {}^{(p)}k_{\nu\lambda}P_i^{\nu}P_i^{\lambda} = -{}^{(p)}k_{\lambda\nu}P_i^{\lambda}P_i^{\nu} = -{}^{(p)}k_{\nu\lambda}P_i^{\nu}P_i^{\lambda} = 0.$$

In virtue of (3.3), $H \neq 0$, we have

$$h_{\nu\lambda} P_i^{\nu} P_i^{\lambda} = 0.$$

THEOREM 4.2. In case that p is odd, there are only two eigenvectors P_i^{ν} and P_i^{λ} which have the following properties.

(a) They are defined up to arbitrary factor of proportionality.

(b)They are null.

(c) They are not perpendicular.

(d)Their directions are real.

Proof. We are only to prove (c).

$$H_2 P_2^{\nu} P_{\nu} = {}^{(p)} k_{\mu\lambda} P_1^{\lambda} P_2^{\mu} = -{}^{(p)} k_{\mu\lambda} P_1^{\mu} P_2^{\lambda} = -{}^{(p)} k_{\mu}^{\nu} P_1^{\mu} P_2^{\mu} = -H_1 P_1^{\nu} P_2^{\nu} P_2^{\nu} = -H_1 P_$$

where $H_1 = (-k)^{\frac{p}{2}}, \ H_2 = -(-k)^{\frac{p}{2}}$. This is equivalent to

$$(H_1 + H_2)h_{\mu\lambda} P^{\mu}_1 P^{\lambda}_2 = 0.$$

Since $H_1 + H_2 = 0$, we have $h_{\mu\lambda} P^{\mu} P^{\lambda}$ is arbitrary, so that $h_{\mu\lambda} P^{\mu} P^{\lambda} \neq 0$.

THEOREM 4.3. If p is even, P^{ν} is not necessarily null.

Proof.

$$Hh_{\nu\lambda}P^{\nu}P^{\lambda} = {}^{(p)}\!k_{\nu\lambda}P^{\nu}P^{\lambda} = (-k)^{\frac{p}{2}}h_{\nu\lambda}P^{\nu}P^{\lambda}$$

so that

$$\left(H - (-k)^{\frac{p}{2}}\right)h_{\nu\lambda}P^{\nu}P^{\lambda} = 0$$

But

$$(H - (-k)^{\frac{p}{2}}) = 0.$$

Therefore, we have

$$h_{\nu\lambda}P^{\nu}P^{\lambda} \neq 0.$$

5. Nonholonomic Frames in X_2

For our further discussions we make the following agreement.

AGREEMENT. The factor of proportionality mentioned in Theorem (4.2)a may be chosen in such a way that

(5.1)
$$h_{\lambda\mu} \frac{P^{\lambda}}{1} \frac{P^{\mu}}{2} = 1.$$

Since P_1^{λ} and P_2^{μ} are linearly independent, there exists a unique reciprocal set of two linearly independent covariant vectors $\overset{1}{P}_{\lambda}$ and $\overset{2}{P}_{\lambda}$ such that

(5.2a)
$$P^{\nu} \overset{i}{P}_{\lambda} = \delta^{\nu}_{\lambda}.$$

These equations are equivalent to

(5.2b)
$$P_{j}^{\lambda} \overset{j}{P}_{\lambda} = \delta_{j}^{i}.$$

DEFINITION 5.1. With the vectors P_i^{ν} and P_{λ}^{i} , a nonholonomic frame of X_2 is defined in the following usual way : If $T_{\lambda}^{\nu\cdots}$ are holonomic components of a tensor, then its nonholonomic components are defined by

(5.3a)
$$T_{j\cdots}^{i\cdots} \stackrel{def}{=} T_{\lambda\cdots}^{\nu\cdots} \stackrel{j}{P}_{\nu} P_{i}^{\lambda} \cdots$$

An easy inspection of (5.2)a and (5.1) shows

(5.3b)
$$T_{\lambda\cdots}^{\nu\cdots} \stackrel{def}{=} T_{j\cdots}^{i\cdots} P_{i}^{\nu} P_{\lambda}^{j} \cdots$$

THEOREM 5.1. Let p be odd. Then the nonholonomic components

(5.4)
$$h_{ij} = h_{\lambda\mu} P^{\lambda}_{i} P^{\mu}_{j} \quad ; \quad h^{ij} = h^{\lambda\mu} \overset{i}{P}^{j}_{\lambda} \overset{j}{P}_{\mu}$$

are given by the matrix equation

(5.5)
$$((h_{ij})) = ((h^{ij})) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Proof. From Theorem(4.2b) and (5.1), we have

(5.6)
$$h_{ij}h^{kj} = h_{\mu\lambda}P_{i}^{\mu}P_{j}^{\lambda}h^{\nu\omega}P_{\nu}^{k}P_{\omega} = h_{\mu\lambda}h^{\nu\lambda}P_{i}^{\mu}P_{\nu}^{k} = P_{i}^{\mu}P_{\nu}^{k}\delta_{\mu}^{\nu} = \delta_{i}^{k}.\square$$

THEOREM 5.2. Denote \mathcal{A} and \mathfrak{a} the determinants of $\overset{i}{P}_{\lambda}$ and $\overset{i}{P}_{\nu}^{\nu}$, then

$$(5.7) \qquad \qquad \mathcal{A}\mathfrak{a} = 1$$

(5.8a)
$$\qquad \qquad \mathcal{A} = -\gamma \sqrt{\mathfrak{h}}$$

(5.8b)
$$\mathfrak{a} = -\gamma/\sqrt{\mathfrak{h}}$$
 where $\gamma = sgn\mathcal{A}$

Proof. We have first

$$\begin{split} \mathfrak{a} &= \mathfrak{e}_{\omega\mu} P_1^{\omega} P_2^{\mu}, \\ \mathcal{A} &= \mathcal{E}^{\omega\mu} P_{\omega}^1 P_{\mu}^2. \end{split}$$

On the other hand,

$$Det((h_{ij})) = \mathfrak{a}^2 \mathfrak{h} = -1,$$
$$Det((h^{ij})) = \mathcal{A}^2 \mathfrak{h}^{-1} = -1.$$

THEOREM 5.3. The nonholonomic components of indicators are

(5.9a)
$$\mathcal{E}^{ij} = 2! \delta^{ij}_{[12]},$$

(5.9b)
$$\mathbf{e}_{ij} = 2! \delta_{ij}^{[12]}.$$

Theorem 5.4. For even p, the nonholonomic components of ${}^{(p)}\!k_\lambda^\nu$ are

(5.10)
$${}^{(p)}k_x^i = (M)^p \delta_x^i$$

so that

$${}^{(p)}k_{xi} = (M)^p h_{xi}.$$

Proof. Our starting equation is equivalent to (1.4), i.e.

$$(M)_{x}^{p}P_{x}^{\nu} = {}^{(p)}k_{\mu}^{\nu}P_{x}^{\mu}.$$

Multiplying this equation by $\overset{i}{P}_{\nu}$ and from (5.2)b,

$$M_{x}^{p}\delta_{x}^{i} = {}^{(p)}k_{\mu}^{\nu}P_{x}^{\mu}\overset{i}{P}_{\nu} = {}^{(p)}k_{x}^{i} \qquad \Box$$

THEOREM 5.5. For even p, the tensors $h_{\lambda\mu}$, ${}^{(p)}k_{\lambda\mu}$, and ${}^{(p)}k^{\lambda\nu}$ may be expressed as follows:

(5.11a)
$$h_{\lambda\mu} = 2P_{1(\lambda}P_{\mu})$$
, $h^{\lambda\nu} = 2P_{1}^{(\lambda}P^{\nu)}$

(5.11b)
$${}^{(p)}k_{\lambda\mu} = 2M^p P_{[\lambda}^{1} P_{\mu]}^{2}, {}^{(p)}k^{\lambda\nu} = 2M^p P_{2}^{[\lambda} P^{\nu]}$$

Proof.

$$h_{\lambda\mu} = h_{ij} \overset{i}{P}_{\lambda} \overset{j}{P}_{\mu} = \overset{1}{P}_{\lambda} \overset{2}{P}_{\mu} + \overset{2}{P}_{\lambda} \overset{1}{P}_{\mu} = \overset{1}{P}_{2} \overset{1}{P}_{1} \mu + \overset{1}{P}_{1} \overset{2}{P}_{2} \mu = 2 \overset{2}{P}_{2} (\overset{1}{\lambda} \overset{P}{P}_{\mu})$$

$${}^{(p)}k_{\lambda\mu} = \overset{M}{}_{x} \overset{p}{P} h_{xi} = \overset{M}{}_{x} \overset{p}{P} 2 \overset{2}{P}_{2} (\overset{P}{\lambda} \overset{P}{P}_{\mu})$$

in virtue of (5.10) and (5.11)a.

THEOREM 5.6.

(5.12a)
$$P_i^{\nu} = \overset{j}{P}_{\lambda} h_{ji} h^{\lambda \nu}$$

(5.12b)
$$\overset{j}{P}_{\lambda} = \underset{i}{P^{\nu}} h^{ij} h_{\lambda\nu}$$

Proof. Put $X_i^{\nu} = \overset{j}{P}_{\lambda} h_{ji} h^{\lambda \nu}$ Multiply this equation by $\overset{i}{P}_{\mu}$. Then

$$X_i^{\nu} \overset{i}{P}_{\mu} = \overset{j}{P}_{\lambda} \overset{i}{P}_{\mu} h_{ji} h^{\lambda \nu} = h_{\lambda \mu} h^{\lambda \nu} = \delta_{\mu}^{\nu}$$

Therefore,

$$X_i^{\nu} = P_i^{\nu} \qquad \square$$

References

- 1. J.M. Ko and K.S. So, A Study on the algebra of p-vectors in a generalized 2dimensional Riemannian manifold X₂, Kangwon-Kyungki Math. Jour. **3** (1995).
- 2. K.T.Chung and J.O.Hyun, On the non-holonomic frames in V_n , Yonsei Nonchong (1975).
- K.T. Chung and H.W. Lee, n-dimensional considerations of indicators, Yonsei Nonchong (1975).
- K.T.Chung and others, On the 2-dimensional considerations of eigenvectors of k_{ij} in X₂, Yonsei Nonchong (1977).
- 5. K.T.Chung and J.M.Kim, A study on the A-vectors of X_2 , Jour of NSRI **22** (1989), 9-16.
- 6. V.Hlavaty, Geometry of Einstein's unified field theory, P.Noordhoff Ltd, 1957.

Department of Mathematics Kangnung National University Kangnung 210-702 Kangwondo, Korea *E-mail*: jmko@knusun.kangnung.ac.kr