ON THE NONHOLONOMIC FRAMES IN A GENERALIZED 2-DIMENSIONAL RIEMANNIAN MANIFOLD X_{2}

Jung Mi Ko

Abstract

We will derive some identities related to p-scalars, pvectors, and non-holonomic frames in a generalized 2-dimensional Riemannian manifold X_{2}.

1. Introduction

Let X_{2} be a generalized 2-dimensional Riemannian manifold referred to a real coordinate system x_{λ}^{μ} and endowed with a real quadratic tensor $g_{\lambda \mu}$, which may be split into its symmetric part $h_{\lambda \mu}$ and skew symmetric part $k_{\lambda \mu}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} \tag{1.1}
\end{equation*}
$$

In this paper, we assume that

$$
\begin{equation*}
\mathfrak{g}=\operatorname{Det}\left(\left(g_{\lambda \mu}\right)\right), \quad \mathfrak{h}=\operatorname{Det}\left(\left(h_{\lambda \mu}\right)\right)<0 \quad, \quad \mathfrak{k}=\operatorname{Det}\left(\left(k_{\lambda \mu}\right)\right) \tag{1.2}
\end{equation*}
$$

According to (1.2), there exists a unique symmetric tensor $h_{\lambda \mu}$ defined by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} \tag{1.3}
\end{equation*}
$$

The tensors $h_{\lambda \mu}$ and $h^{\lambda \nu}$ will serve for raising or lowering indices of tensor quantities in X_{2} in the usual manner.

[^0]The purpose of the present paper is, in the first, to study the properties of the p-scalars H and the corresponding eigenvectors P^{ν} in X_{2}, defined by

$$
\begin{equation*}
\left(H h_{\nu \lambda}-{ }^{(p)} k_{\nu \lambda}\right) P^{\nu}=0, \quad(H: \text { a scalar }) \tag{1.4}
\end{equation*}
$$

Finally, we introduce a nonholonomic frame to X_{2} and find expressions for the tensor $h_{\lambda \mu}$ and ${ }^{(p)} k_{\nu \lambda}$ in terms of the p-vectors P^{ν}.

2. Preliminaries

This section is a brief collection of definitions, notations, and basic results which are needed in our subsequent considerations.

$$
\begin{gather*}
\mathfrak{g}=\mathfrak{h}+\mathfrak{k} \tag{2.2}\\
{ }^{(0)} k_{\lambda}^{\nu}=\delta_{\lambda}^{\nu},{ }^{(p)} k_{\lambda}^{\nu}={ }^{(p-1)} k_{\lambda}^{\alpha} k_{\alpha}^{\nu} \quad(p=1,2, \cdots) \tag{2.3}\\
\mathfrak{k}=\Omega^{2}>0, k=\frac{\Omega^{2}}{\mathfrak{h}}<0 \quad \text { where } \quad \Omega=k_{12} \tag{2.4}
\end{gather*}
$$

$$
\begin{align*}
& { }^{(p)} k_{\lambda \mu}=(-k)^{\frac{p}{2}} h_{\lambda \mu} \quad \text { if } \mathrm{p} \text { is even } \tag{2.5a}\\
& { }^{(p)} k_{\lambda \mu}=(-k)^{\frac{p-1}{2}} k_{\lambda \mu} \quad \text { if } \mathrm{p} \text { is odd } \tag{2.5b}
\end{align*}
$$

Furthermore, we use $\mathcal{E}^{\lambda \mu}\left(\mathfrak{e}_{\lambda \mu}\right)$ as the contravariant (covariant) indicators of weight $1(-1)$.

The eigenvalue M and the corresponding eigenvector a^{ν} in X_{2} defined by

$$
\begin{equation*}
\left(M h_{\nu \lambda}-k_{\nu \lambda}\right) a^{\nu}=0 \quad(M \text { : a scalar }) \tag{2.6}
\end{equation*}
$$

are called basic scalars and basic vectors of X_{2}, respectively.
There are exactly two linearly independent basic vectors a^{ν} satisfying (2.6), where the corresponding basic scalars M are given by

$$
\begin{equation*}
M=M_{1}=-M_{2}=\sqrt{-k} \tag{2.7}
\end{equation*}
$$

3. P-Scalars

Lemma 3.1. We have

$$
\begin{equation*}
\mathfrak{k}>0 \quad, \quad k=\frac{\mathfrak{k}}{\mathfrak{h}}<0 \tag{3.1}
\end{equation*}
$$

Proof. Since $k_{\lambda \mu}$ is skew symmetric, $\mathfrak{k}=\left(k_{12}\right)^{2}=\Omega^{2}>0$
Lemma 3.2. We have

$$
\begin{align*}
A(H) & \stackrel{\text { def }}{=} \operatorname{Det}\left(\left(H h_{\nu \lambda}-{ }^{(p)} k_{\nu \lambda}\right)\right) \tag{3.2}\\
& = \begin{cases}\mathfrak{h}\left(H-(-k)^{\frac{p}{2}}\right)^{2}, & \text { if } p \text { is even } \\
\mathfrak{h}\left(H^{2}+k^{p}\right), & \text { if } p \text { is odd. }\end{cases}
\end{align*}
$$

Proof. (case 1) p is even:

$$
\begin{aligned}
2 A(H) & =2 \operatorname{Det}\left(\left(H h_{\nu \lambda}-{ }^{(p)} k_{\mu \beta}\right)\right) \\
& =\mathcal{E}^{\omega \mu} \mathcal{E}^{\alpha \beta}\left(H h_{\omega \alpha}-{ }^{(p)} k_{\omega \alpha}\right)\left(H h_{\mu \beta}-{ }^{(p)} k_{\mu \beta}\right) \\
& =2 H^{2} \mathfrak{h}-2 H \mathcal{E}^{\omega \mu} \mathcal{E}^{\alpha \beta} h_{\omega \alpha}{ }^{(p)} k_{\mu \beta}+2 \operatorname{Det}\left(\left(^{(p)} k_{\lambda \mu}\right)\right) \\
& =2 H^{2} \mathfrak{h}-2 H\left(2(-k)^{\frac{p}{2}} \mathfrak{h}\right)+2 k^{2} \mathfrak{h} \\
& =2 \mathfrak{h}\left(H-(-k)^{\frac{p}{2}}\right)^{2}
\end{aligned}
$$

(case 2) p is odd:

$$
\begin{aligned}
2 A(H) & =2 \operatorname{Det}\left(\left(H h_{\nu \lambda}-{ }^{(p)} k_{\nu \lambda}\right)\right) \\
& =\mathcal{E}^{\omega \mu} \mathcal{E}^{\alpha \beta}\left(H h_{\omega \alpha}-{ }^{(p)} k_{\omega \alpha}\right)\left(H h_{\mu \beta}-{ }^{(p)} k_{\mu \beta}\right) \\
& =2 H^{2} \mathfrak{h}-2 H \mathcal{E}^{\omega \mu} \mathcal{E}^{\alpha \beta} h_{\omega \alpha}{ }^{(p)} k_{\mu \beta}+2 \operatorname{Det}\left(\left(^{(p)} k_{\lambda \mu}\right)\right) \\
& =2 \mathfrak{h}\left(H^{2}+k^{p}\right)
\end{aligned}
$$

Theorem 3.3. The eigenvalues H of (2.4) are given by

$$
\left\{\begin{array}{l}
H=(-k)^{\frac{p}{2}}, \quad p \text { is even } \tag{3.3}\\
H= \pm(-k)^{\frac{p}{2}}, \quad p \text { is odd }
\end{array}\right.
$$

Proof. The existence of the above case is clear from Lemma(3.1). A necessary and sufficient condition for the existence of a nontrivial solution P^{ν} of (1.4) is $A(H)=0$. According to Lemma(3.2), the result follows directly.

Remark. In case that p is even, $H=(-k)^{\frac{P}{2}}$ is a double root of $A(H)=0$.

Theorem 3.4. Every basic vector a_{i}^{ν} of X_{2} is also p-vector of X_{2}.
Proof. (case 1) p is even:
From (2.5a), we have

$$
{ }^{(p)} k_{\nu \lambda} a_{i}^{\nu}=(-k)^{\frac{p}{2}} h_{\nu \lambda} a_{i}^{\nu}=M^{p} h_{\nu \lambda} a_{i}^{\nu}
$$

where $M=\sqrt{-k}$.
(case 2) p is odd:
From (2.5b), we have

$$
{ }^{(p)} k_{\nu \lambda} a_{i}^{\nu}=(-k)^{\frac{p-1}{2}} k_{\nu \lambda} a_{i}^{\nu}=(-k)^{\frac{p-1}{2}} M h_{\nu \lambda} a_{i}^{\nu}=M^{p} h_{\nu \lambda}
$$

where $M=M_{1}=M_{2}=\sqrt{-k}$
In both cases, we have

$$
{ }^{(p)} k_{\nu \lambda} a_{i}^{\nu}=H h_{\nu \lambda}{ }_{i} a^{\nu}
$$

where $H=M^{p}$.
Therefore, a_{i}^{ν} is the p-vector P^{ν} with p-scalar H.
Theorem 3.5. In case that p is even, every vector of X_{2} is a pvector of X_{2}.

Proof. From (2.5a), the relation (1.4) may be written as

$$
\begin{equation*}
\left(H-(-k)^{\frac{p}{2}}\right) h_{\nu \lambda} P^{\nu}=0 \tag{3.4}
\end{equation*}
$$

Since $\mathfrak{h} \neq 0$, (3.4) holds for every vector P^{ν} with $H=(-k)^{\frac{p}{2}}$.

4. P-Vectors

In this section, we shall study and derive several properties of pvectors given by (1.4).

Theorem 4.1. In case that p is odd, the p-vector P^{ν} is a null vector.

Proof. Since the tensor ${ }^{(p)} k_{\lambda \mu}$ is skew-symmetric and from (1.4), for $i=1,2$,

$$
H h_{\nu \lambda} P_{i}^{\nu} P_{i}^{\lambda}={ }^{(p)} k_{\nu \lambda} P_{i}^{\nu} P_{i}^{\lambda}=-{ }^{(p)} k_{\lambda \nu} P_{i}^{\lambda} P_{i}^{\nu}=-{ }^{(p)} k_{\nu \lambda} P_{i}^{\nu} P_{i}^{\lambda}=0 .
$$

In virtue of (3.3), $H \neq 0$, we have

$$
h_{\nu \lambda} P_{i}^{\nu} P_{i}^{\lambda}=0 .
$$

Theorem 4.2. In case that p is odd, there are only two eigenvectors P_{i}^{ν} and P_{i}^{λ} which have the following properties.
(a)They are defined up to arbitrary factor of proportionality.
(b)They are null.
(c)They are not perpendicular.
(d)Their directions are real.

Proof. We are only to prove (c).
where $H_{1}=(-k)^{\frac{p}{2}}, H_{2}=-(-k)^{\frac{p}{2}}$. This is equivalent to

$$
\left(H_{1}+H_{2}\right) h_{\mu \lambda} P_{1}^{\mu} P_{2}^{\lambda}=0 .
$$

Since $H_{1}+H_{2}=0$, we have $h_{\mu \lambda} P_{1}^{\mu} P_{2}^{\lambda}$ is arbitrary, so that $h_{\mu \lambda} P_{1}^{\mu} P_{2}^{\lambda} \neq$ 0 .

Theorem 4.3. If p is even, P^{ν} is not necessarily null.

Proof.

$$
H h_{\nu \lambda} P^{\nu} P^{\lambda}={ }^{(p)} k_{\nu \lambda} P^{\nu} P^{\lambda}=(-k)^{\frac{p}{2}} h_{\nu \lambda} P^{\nu} P^{\lambda}
$$

so that

$$
\left(H-(-k)^{\frac{p}{2}}\right) h_{\nu \lambda} P^{\nu} P^{\lambda}=0 .
$$

But

$$
\left(H-(-k)^{\frac{p}{2}}\right)=0 .
$$

Therefore, we have

$$
h_{\nu \lambda} P^{\nu} P^{\lambda} \neq 0 .
$$

5. Nonholonomic Frames in X_{2}

For our further discussions we make the following agreement.
Agreement. The factor of proportionality mentioned in Theorem (4.2)a may be chosen in such a way that

$$
\begin{equation*}
h_{\lambda \mu} P_{1}^{\lambda}{ }_{2}^{P}=1 . \tag{5.1}
\end{equation*}
$$

Since P_{1}^{λ} and ${\underset{2}{2}}^{\mu}$ are linearly independent, there exists a unique reciprocal set of two linearly independent covariant vectors $\stackrel{1}{P}_{\lambda}$ and $\stackrel{2}{P}_{\lambda}$ such that

$$
\begin{equation*}
P_{i}^{\nu} P_{\lambda}^{i}=\delta_{\lambda}^{\nu} \tag{5.2a}
\end{equation*}
$$

These equations are equivalent to

$$
\begin{equation*}
P_{j}^{\lambda} \stackrel{j}{P}_{\lambda}=\delta_{j}^{i} . \tag{5.2b}
\end{equation*}
$$

Definition 5.1. With the vectors P_{i}^{ν} and $\stackrel{i}{P}_{\lambda}$, a nonholonomic frame of X_{2} is defined in the following usual way : If $T_{\lambda \ldots}^{\nu \ldots}$ are holonomic components of a tensor, then its nonholonomic components are defined by

$$
\begin{equation*}
T_{j \cdots}^{i \cdots} \stackrel{\text { def }}{=} T_{\lambda \ldots \ldots}^{\nu} \stackrel{j}{P_{\nu}}{ }_{i}{ }_{i}^{\lambda} \ldots \tag{5.3a}
\end{equation*}
$$

An easy inspection of (5.2) a and (5.1) shows

$$
\begin{equation*}
T_{\lambda \ldots}^{\nu \ldots} \stackrel{\text { def }}{=} T_{j \ldots}^{i \cdots} P_{i}^{\nu} P_{\lambda}^{j} \ldots \tag{5.3b}
\end{equation*}
$$

Theorem 5.1. Let p be odd. Then the nonholonomic components

$$
\begin{equation*}
h_{i j}=h_{\lambda \mu} P_{i}^{\lambda} P_{j}^{\mu} \quad ; \quad h^{i j}=h^{\lambda \mu} \stackrel{i}{P}_{\lambda} \stackrel{j}{P}_{\mu} \tag{5.4}
\end{equation*}
$$

are given by the matrix equation

$$
\left(\left(h_{i j}\right)\right)=\left(\left(h^{i j}\right)\right)=\left(\begin{array}{ll}
0 & 1 \tag{5.5}\\
1 & 0
\end{array}\right)
$$

Proof. From Theorem(4.2b) and (5.1), we have

$$
\begin{equation*}
h_{i j} h^{k j}=h_{\mu \lambda} P_{i}^{\mu} P_{j}^{\lambda} h^{\nu \omega} \stackrel{k}{P}_{\nu}^{k} \stackrel{j}{P}_{\omega}=h_{\mu \lambda} h^{\nu \lambda} P_{i}^{\mu}{ }_{P}^{k}{ }_{\nu}=P_{i}^{\mu} \stackrel{k}{P_{\nu}} \delta_{\mu}^{\nu}=\delta_{i}^{k} \square \tag{5.6}
\end{equation*}
$$

Theorem 5.2. Denote \mathcal{A} and \mathfrak{a} the determinants of $\stackrel{i}{P}_{\lambda}$ and P_{i}^{ν}, then

$$
\begin{equation*}
\mathcal{A}=-\gamma \sqrt{\mathfrak{h}} \tag{5.8a}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{a}=-\gamma / \sqrt{\mathfrak{h}} \quad \text { where } \gamma=\operatorname{sgn} \mathcal{A} \tag{5.8b}
\end{equation*}
$$

Proof. We have first

$$
\begin{aligned}
& \mathfrak{a}=\mathfrak{e}_{\omega \mu} P_{1}^{\omega}{\underset{2}{P}}^{\mu}, \\
& \mathcal{A}=\mathcal{E}^{\omega \mu} \stackrel{1}{P}_{\omega} \stackrel{2}{P}_{\mu} .
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
\operatorname{Det}\left(\left(h_{i j}\right)\right)=\mathfrak{a}^{2} \mathfrak{h}=-1, \\
\operatorname{Det}\left(\left(h^{i j}\right)\right)=\mathcal{A}^{2} \mathfrak{h}^{-1}=-1 .
\end{gathered}
$$

TheOrem 5.3. The nonholonomic components of indicators are

$$
\begin{gather*}
\mathcal{E}^{i j}=2!\delta_{[12]}^{i j}, \tag{5.9a}\\
\mathfrak{e}_{i j}=2!\delta_{i j}^{[12]} . \tag{5.9b}
\end{gather*}
$$

Theorem 5.4. For even p, the nonholonomic components of ${ }^{(p)} k_{\lambda}^{\nu}$ are

$$
\begin{equation*}
{ }^{(p)} k_{x}^{i}=\underset{x}{(M)^{p}} \delta_{x}^{i} \tag{5.10}
\end{equation*}
$$

so that

$$
{ }^{(p)} k_{x i}=\underset{x}{(M)^{p} h_{x i} .}
$$

Proof. Our starting equation is equivalent to (1.4), i.e.

$$
\underset{x}{(M)^{p}}{ }_{x}^{\nu}={ }^{(p)} k_{\mu}^{\nu} P_{x}^{\mu} .
$$

Multiplying this equation by $\stackrel{i}{P}_{\nu}$ and from (5.2)b,

$$
{ }_{x}^{M^{p}} \delta_{x}^{i}={ }^{(p)} k_{\mu}^{\nu} P_{x}^{\mu} \stackrel{i}{P}_{\nu}^{i}={ }^{(p)} k_{x}^{i}
$$

Theorem 5.5. For even p, the tensors $h_{\lambda \mu},{ }^{(p)} k_{\lambda \mu}$, and ${ }^{(p)} k^{\lambda \nu}$ may be expressed as follows:

$$
\begin{equation*}
\left.h_{\lambda \mu}=2{\underset{1}{P}}_{(\lambda}{\underset{2}{\mu}}^{\mu}\right) \quad, \quad h^{\lambda \nu}=\underset{1}{2 P_{1}^{(\lambda}{\underset{2}{ }}^{\nu)}} \tag{5.11a}
\end{equation*}
$$

$$
\begin{equation*}
{ }^{(p)} k_{\lambda \mu}=2 M^{p} \stackrel{1}{P}_{[\lambda} \stackrel{2}{P}_{\mu]},{ }^{(p)} k^{\lambda \nu}=2 M_{2}^{p} P_{2}^{[\lambda} P_{1}^{\nu]} \tag{5.11b}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& h_{\lambda \mu}=h_{i j} \stackrel{i}{P}_{\lambda} \stackrel{j}{P}_{\mu}=\stackrel{1}{P}_{\lambda} \stackrel{2}{P}_{\mu}+\stackrel{2}{P}_{\lambda} \stackrel{1}{P}_{\mu}={\underset{2}{P}}_{\lambda}{\underset{1}{P}}_{\mu}+{\underset{1}{P}}_{\lambda}{\underset{2}{P}}_{\mu}=2 \underset{2}{P}\left(\lambda{ }_{1}{ }_{1} \mu\right) \\
& { }^{(p)} k_{\lambda \mu}={ }_{x}^{M} h_{x i}={\underset{x}{M}}_{M^{p}}^{2} \underset{2}{P}\left(\lambda{ }_{1}{ }_{\mu}\right)
\end{aligned}
$$

in virtue of (5.10) and (5.11)a.
Theorem 5.6.

$$
\begin{align*}
& P_{i}^{\nu}=\stackrel{j}{P}_{\lambda} h_{j i} h^{\lambda \nu} \tag{5.12a}\\
& \stackrel{j}{P}_{\lambda}=P_{i}^{\nu} h^{i j} h_{\lambda \nu}
\end{align*}
$$

Proof. Put $X_{i}^{\nu}=\stackrel{j}{P}_{\lambda} h_{j i} h^{\lambda \nu}$
Multiply this equation by $\stackrel{i}{P}_{\mu}$. Then

$$
X_{i}^{\nu} \stackrel{i}{P}_{\mu}=\stackrel{j}{P}_{\lambda} \stackrel{i}{P}_{\mu} h_{j i} h^{\lambda \nu}=h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu}
$$

Therefore,

$$
X_{i}^{\nu}=P_{i}^{\nu}
$$

References

1. J.M. Ko and K.S. So, A Study on the algebra of p-vectors in a generalized 2dimensional Riemannian manifold X_{2}, Kangwon-Kyungki Math. Jour. 3 (1995).
2. K.T.Chung and J.O.Hyun, On the non-holonomic frames in V_{n}, Yonsei Nonchong (1975).
3. K.T. Chung and H.W. Lee, n-dimensional considerations of indicators, Yonsei Nonchong (1975).
4. K.T.Chung and others, On the 2-dimensional considerations of eigenvectors of $k_{i j}$ in X_{2}, Yonsei Nonchong (1977).
5. K.T.Chung and J.M.Kim, A study on the A-vectors of X_{2}, Jour of NSRI 22 (1989), 9-16.
6. V.Hlavaty, Geometry of Einstein's unified field theory, P.Noordhoff Ltd, 1957.

Department of Mathematics
Kangnung National University
Kangnung 210-702 Kangwondo, Korea
E-mail: jmko@knusun.kangnung.ac.kr

[^0]: Received June 12, 1999.
 1991 Mathematics Subject Classification: 53A45, 83C05.
 Key words and phrases: nonholonomic frame, p-vector.
 This paper was supported by Kangnung National University Overseas Research Foundation, 1997-1998.

