DOI QR코드

DOI QR Code

ON THE STRUCTURE OF MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF NON-NEGATIVE CURVATURE

  • Yun, Gab-Jin (Department of Mathematics Myong Ji University) ;
  • Kim, Dong-Ho (Department of Mathematics Myong Ji University)
  • Published : 2009.11.30

Abstract

Let M$^n$ be a complete oriented non-compact minimally immersed submanifold in a complete Riemannian manifold N$^{n+p}$ of nonnegative curvature. We prove that if M is super-stable, then there are no non-trivial L$^2$ harmonic one forms on M. This is a generalization of the main result in [8].

Keywords

References

  1. H.-D. Cao, Y Shen, and S. Zhu, The structure of stable minimal hypersurfaces in $R^{n+1}$, Math. Res. Lett. 4 (1997), no. 5, 637-644 https://doi.org/10.4310/MRL.1997.v4.n5.a2
  2. J. Dodziuk, $L^2$ harmonic forms on complete manifolds, in Seminar on Differential Geometry, Princeton University Press, Princeton N. J., 1982, 291-302
  3. D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199-211 https://doi.org/10.1002/cpa.3160330206
  4. H. B. Lawson, Lectures on Minimal Submanifolds. Vol. I, Publish or Perish, Inc., Wilmington, Del., 1980
  5. P.-F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1051-1061 https://doi.org/10.2307/2159628
  6. P. Li, Curvature and function theory on Riemannian manifolds, Surveys in differential geometry, 375-432, Surv. Differ. Geom., VII, Int. Press, Somerville, MA, 2000
  7. P. Li, Differential geometry via harmonic functions, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 293-302, Higher Ed. Press, Beijing, 2002
  8. R. Miyaoka, $L^2$ harmonic 1-forms on a complete stable minimal hypersurface, Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993
  9. K. Seo, Rigidity of minimal submanifolds with flat normal bundle, Commun. Korean Math. Soc. 23 (2008), no. 3, 421-426 https://doi.org/10.4134/CKMS.2008.23.3.421
  10. J. Spruck, Remarks on the stability of minimal submanifolds of $R^n$, Math. Z. 144 (1975), no. 2, 169-174 https://doi.org/10.1007/BF01190946
  11. S. Tanno, $L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan 48 (1996), no. 4, 761-768 https://doi.org/10.2969/jmsj/04840761
  12. Q. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262 (2003), 176-180 https://doi.org/10.1002/mana.200310120
  13. S.-T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670 https://doi.org/10.1512/iumj.1976.25.25051
  14. G. Yun, Total scalar curvature and $L^2$ harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata 89 (2002), 135-141