• Title/Summary/Keyword: Noetherian ring

Search Result 164, Processing Time 0.023 seconds

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.

MINIMAXNESS AND COFINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY WITH RESPECT TO A PAIR OF IDEALS

  • Dehghani-Zadeh, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.695-701
    • /
    • 2016
  • Let I and J be two ideals of a commutative Noetherian ring R and M, N be two non-zero finitely generated R-modules. Let t be a non-negative integer such that $H^i_{I,J}(N)$ is (I, J)-minimax for all i < t. It is shown that the generalized local cohomology module $H^i_{I,J}(M,N)$ is (I, J)-Cofinite minimax for all i < t. Also, we prove that the R-module $Ext^j_R(R/I,H^i_{I,J}(N))$ is finitely generated for all $i{\leq}t$ and j = 0, 1.

ALMOST COHEN-MACAULAYNESS OF KOSZUL HOMOLOGY

  • Mafi, Amir;Tabejamaat, Samaneh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.471-477
    • /
    • 2019
  • Let (R, m) be a commutative Noetherian ring, I an ideal of R and M a non-zero finitely generated R-module. We show that if M and $H_0(I,M)$ are aCM R-modules and $I=(x_1,{\cdots},x_{n+1})$ such that $x_1,{\cdots},x_n$ is an M-regular sequence, then $H_i(I,M)$ is an aCM R-module for all i. Moreover, we prove that if R and $H_i(I,R)$ are aCM for all i, then R/(0 : I) is aCM. In addition, we prove that if R is aCM and $x_1,{\cdots},x_n$ is an aCM d-sequence, then depth $H_i(x_1,{\cdots},x_n;R){\geq}i-1$ for all i.

AMALGAMATED MODULES ALONG AN IDEAL

  • El Khalfaoui, Rachida;Mahdou, Najib;Sahandi, Parviz;Shirmohammadi, Nematollah
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Let R and S be two commutative rings, J be an ideal of S and f : R → S be a ring homomorphism. The amalgamation of R and S along J with respect to f, denoted by R ⋈f J, is the special subring of R × S defined by R ⋈f J = {(a, f(a) + j) | a ∈ R, j ∈ J}. In this paper, we study some basic properties of a special kind of R ⋈f J-modules, called the amalgamation of M and N along J with respect to ��, and defined by M ⋈�� JN := {(m, ��(m) + n) | m ∈ M and n ∈ JN}, where �� : M → N is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

On the Local Cohomology and Formal Local Cohomology Modules

  • Shahram Rezaei;Behruz Sadeghi
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.37-43
    • /
    • 2023
  • Let 𝔞 and 𝔟 be ideals of a commutative Noetherian ring R and M be a finitely generated R-module of dimension d > 0. We prove some results concerning the top local cohomology and top formal local cohomology modules. Among other things, we determine SuppR(𝔟 Hd𝔞(M)) and SuppR(𝔟𝔉d𝔞(M)). Also, we obtain some relations between AnnR(𝔟 Hd𝔞(M)), AttR(𝔟 Hd𝔞(M)) and SuppR(𝔟 Hd𝔞(M)) and we get similar results for 𝔟𝔉d𝔞(M).

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

COFINITENESS OF GENERAL LOCAL COHOMOLOGY MODULES FOR SMALL DIMENSIONS

  • Aghapournahr, Moharram;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1341-1352
    • /
    • 2016
  • Let R be a commutative Noetherian ring, ${\Phi}$ a system of ideals of R and $I{\in}{\Phi}$. In this paper among other things we prove that if M is finitely generated and $t{\in}\mathbb{N}$ such that the R-module $H^i_{\Phi}(M)$ is $FD_{{\leq}1}$ (or weakly Laskerian) for all i < t, then $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all i < t and for any $FD_{{\leq}0}$ (or minimax) submodule N of $H^t_{\Phi}(M)$, the R-modules $Hom_R(R/I,H^t_{\Phi}(M)/N)$ and $Ext^1_R(R/I,H^t_{\Phi}(M)/N)$ are finitely generated. Also it is shown that if cd I = 1 or $dimM/IM{\leq}1$ (e.g., $dim\;R/I{\leq}1$) for all $I{\in}{\Phi}$, then the local cohomology module $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all $i{\geq}0$. These generalize the main results of Aghapournahr and Bahmanpour [2], Bahmanpour and Naghipour [6, 7]. Also we study cominimaxness and weakly cofiniteness of local cohomology modules with respect to a system of ideals.