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ALMOST COHEN-MACAULAYNESS OF KOSZUL
HOMOLOGY

Amir Mafi and Samaneh Tabejamaat

Abstract. Let (R,m) be a commutative Noetherian ring, I an ideal of
R and M a non-zero finitely generated R-module. We show that if M

and H0(I,M) are aCM R-modules and I = (x1, . . . , xn+1) such that
x1, . . . , xn is an M -regular sequence, then Hi(I,M) is an aCM R-module
for all i. Moreover, we prove that if R and Hi(I, R) are aCM for all i, then
R/(0 : I) is aCM. In addition, we prove that if R is aCM and x1, . . . , xn

is an aCM d-sequence, then depthHi(x1, . . . , xn;R) ≥ i− 1 for all i.

Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring
with non-zero identity, I an ideal of R and M a non-zero finitely generated
R-module. Let Hi(I,M) denote the ith Koszul homology of the ideal I with
respect to some fixed system of generators for I.

The R-module M is called almost Cohen-Macaulay (i.e., aCM) if for every
p ∈ SuppR(M) grade(p,M) = grade(pRp,Mp), and R is called an aCM ring if
it is an aCM R-module. It is clear that all CM R-modules are aCM. Several
fundamental properties and some characterizations of aCM modules have been
proved in [9]. In particular, Kang in [9] proved that if (R,m) is a local ring,
then M is an aCM R-module if and only if dimM 6 1 + depthM . Moreover,
several interesting examples have been given in [10]. After that, several authors
studied aCM modules (see for example [2], [8], [12], [13] and [14]).

Huneke in [6] and [7] studied the Cohen-Maculayness of Koszul homology of
Hi(I,R). The main aim of this paper is to prove the following:
Theorem 0.1. Let R be a Noetherian ring and I be an ideal of R.

(i) If I = (x1, . . . , xn+1) such that x1, . . . , xn is an M -regular sequence and
H0(I,M) is an aCM R-module, then Hi(I,M) is an aCM R-module
for all i ≥ 0.

(ii) If (R,m) is an aCM local ring and Hi(I,R) is aCM for all i, then
R/(0 : I) is aCM.
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(iii) If (R,m) is an aCM local ring and x1, . . . , xn is an aCM d-sequence,
then depthHi(x1, . . . , xn;R) ≥ i− 1 for all i ≥ 0 whenever Hi(x1, . . .,
xn;R) 6= 0.

For basic definitions and unexplained terminologies, we refer the reader to
[1] or [15].

1. The results

We begin this section by the following lemma which is a generalization of
[7, Remark 1.5].

Lemma 1.1. Let M be a CM R-module and let I = (x1, . . . , xn) be an ideal
of R with Hi(I,M) 6= 0. Then dimHi(I,M) = dimM/IM .

Proof. It is known that I+Ann(M) ⊆ Ann(Hi(I,M)). Hence dimHi(I,M) ≤
dimM/IM . For converse, let p be a minimal prime ideal of Ass(M/IM) and set
gradeMp

(IRp) = k. Then Hn−k(IRp,Mp) ∼= (yM :M I/yM)p is the last non-
vanishing homology module, where y = y1, . . . , yk is an Mp-regular sequence in
IRp. This module is a submodule of (M/yM)p, which is equidimensional and
so is all of its submodules. Then by rigidity of the Koszul homology we cannot
have any intermediate Hi(I,M)p equal to 0 (see [15, Theorem 5.10]). Thus
Ann(Hi(I,M)) ⊆

√
I +Ann(M) and so dimM/IM ≤ dimHi(I,M). This

completes the proof. �

By using the proof of Lemma 1.1, we conclude that Ann(Hi(I,M)) ⊆√
(I +Ann(M)). Vasconcelos, in [15, page 286], wrote that in general we have

Ann(Hi(I,R)) ⊆
√
I. But the following example says that Ann(Hi(I,M)) is

not contained in
√
Ann(M/IM) in general.

For the computation of all examples we use Macaulay 2 [3].

Example 1.2. Let R = k[x, y, z, u] be a polynomial ring with k be a field.
Let I = (x, yz, yu) be an ideal of R. Then Ann(H1(I,M)) = (x, y), where
M = R/I.

The following example says that the assumption of Cohen-Maculayness of
M in Lemma 1.1 is essential.

Example 1.3. Let R = k[x, y, z] be a polynomial ring with k is a field. Let
I = (x, y) andM = R/(x)⊕R/(x, y, z). ThenH2(I,M) 6= 0, dimH2(I,M) = 0
but we have dimM/IM = 1.

Corollary 1.4. Let (R,m) be a local ring and let N be a CM R-modules with
gradeN Ann(M) = g. Then dimExtg(M,N) = dimN/Ann(M)N . In particu-
lar, dimExtg(M,N) = dimN − g.

Proof. Set Ann(M) = (x1, . . . , xn). By [11, Corollary 2.2]

dimExtg(R/Ann(M), N) = dimExtg(M,N)
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and also by [1, Theorem 1.6.16]

(1) dimExtg(R/Ann(M), N) = dimHn−g(Ann(M), N).

Thus by Lemma 1.1 and [1, Theorem 2.1.2] the result follows. �

The following result easily follows by the proof of Lemma 1.1 and [13, Defi-
nition 2.1].

Corollary 1.5. Let (R,m) be a local ring and I be an ideal of R. If dimM ≤ 1,
then M and Hi(I,M) are aCM for all i.

Proposition 1.6. Let M be an aCM R-module and let I = (x1, . . . , xn) be
an ideal of R such that x = x1 is an M -regular element. Then Hi(I,M) is
aCM for all i if and only if Hi(I,M) is aCM for all i, where I = I/(x) and
M =M/xM .

Proof. From the exact sequence 0→ M
x→ M → M/xM → 0, we have a long

exact sequence

· · · → Hi(I,M)
x→ Hi(I,M)→ Hi(I,M)→ Hi−1(I,M)

x→ Hi−1(I,M) · · · .

Since xHi(I,M) = 0 = xHi−1(I,M), we have the exact sequence

(∗) 0 −→ Hi(I,M) −→ Hi(I,M) −→ Hi−1(I,M) −→ 0

for all i ≥ 1. Set dimM/IM = d. If Hi(I,M) are aCM, then dimHi(I,M)−
1 ≤ d − 1 ≤ depthHi(I,M) for all i and so by the exact sequence (∗),
dimHi(I,M)− 1 ≤ depthHi(I,M) for all i ≥ 1. For i = 0, Hi(I,M) =
M/IM ∼=M/IM = Hi(I,M) is aCM.

Conversely, suppose dimHi(I,M) ≤ dimM/IM = d. Induct on i to show
that dimHi(I,M) − 1 ≤ depthHi(I,M). For i = 0, Hi(I,M) ∼= M/IM =
Hi(I,M), and by assumption this is aCM. Suppose we have shown Hi−1(I,M)
is aCM. It follows from (∗) that

depthHi(I,M) ≥ min{depthHi(I,M),depthHi−1(I,M) + 1}
≥ min{depthHi(I,M), d} = depthHi(I,M).

Therefore depthHi(I,M) ≥ dimHi(I,M) − 1 and so Hi(I,M) is aCM, as
required. �

Theorem 1.7. Let M be an aCM R-module and I = (x1, . . . , xn+1) be an ideal
of R such that x1, . . . , xn is an M -regular sequence. If H0(I,M) is an aCM
R-module, then Hi(I,M) is an aCM R-module for all i ≥ 0.

Proof. Since grade(I,M) = n, by [1, Theorem 1.6.17] we have Hi(I,M) = 0
for all i ≥ 2. By assumption H0(I,M) = M/IM is aCM. Thus it remains
to show that H1(I,M) is aCM. By [1, Theorem 1.6.16] we have H1(I,M) ∼=
HomR(R/I,M/(x1, . . . , xn)M). Consider the following exact sequences

(†) 0→M/((x1, . . . , xn)M :M xn+1)→M/(x1, . . . , xn)M →M/IM → 0,
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and

(‡) 0→ H1(I,M)→M/(x1, . . . , xn)M →M/((x1, . . . , xn)M :M xn+1)→ 0.

Since M/IM is aCM, we have depthM/IM ≥ dimM/IM − 1 ≥ dimM −
gradeM I − 2, the second inequality follows by [12, Theorem 2.3]. Since M is
aCM, we have

depthM/(x1, . . . , xn)M = depthM − n = depthM − gradeM I

≥ dimM − gradeM I − 1.

Hence the exact sequence (†) yields that
depthM/((x1, . . . , xn)M :M xn+1) ≥ dimM − gradeM I − 1.

Therefore the exact sequence (‡) yields that
depthH1(I,M) ≥ dimM − gradeM I − 1

≥ dimM/IM − 1 ≥ dimH1(I,M)− 1.

Hence H1(I,M) is aCM. �

Theorem 1.8. Let (R,m) be an aCM local ring and I be an ideal of R. If
Hi(I,R) is aCM for all i, then R/(0 : I) is aCM.

Proof. We can assume that (0 : I) 6= 0. If dimR/I ≤ 1, then by the proof of
Lemma 1.1 dimHi(I,R) ≤ 1 and so dimR/(0 : I) ≤ 1. Thus R/(0 : I) is aCM.

Now, we can assume that dimR/I ≥ 2 and so there exists a nonzero divisor
z on Hi(I,R) and R for all i. The exact sequence

0 −→ R
z−→ R −→ R/zR −→ 0

gives a long exact sequence

Hi(I,R)
z−→ Hi(I,R) −→ Hi(I,R/zR) −→ Hi−1(I,R)

z−→ Hi−1(I,R).

Since z is a nonzero divisor on Hi−1(I,R) and Hi(I,R), we obtain the exact
sequence

0 −→ Hi(I,R)
z−→ Hi(I,R) −→ Hi(I,R/zR) −→ 0,

and so Hi(I,R)/zHi(I,R) ∼= Hi(I/zR,R/zR). Thus it follows that Hi(I/zR,
R/zR) are aCM. Set I = I/zI and R = R/zR. We induct on dimR/I to
prove R/(0 : I) is aCM. Since dimR/I ≥ 2 we choose z as above, R/(0 : I) ∼=
R/(z : I) is aCM. Let n be the number of generated of I. Since z is not a zero
divisor on Hn(I,R) we have (z : I)/(z) = Hn(I,R) = Hn(I,R)/zHn(I,R) =
(0 : I)/z(0 : I). It follows that (z : I) = ((0 : I), z). Since z is not a zero divisor
on R, z is not a zero divisor on R/(0 : I). As R/(z : I) = R/((0 : I), z) is aCM,
we conclude that R/(0 : I) is aCM, as required. �

Huneke in [4] and [5] defined that a sequence x1, . . . , xn in R is a d-sequence
which satisfies in the following two conditions:

(i) xi /∈ (x1, . . . , xi−1, xi+1, . . . , xn) for 1 ≤ i ≤ n and
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(ii) for all k ≥ i+ 1 and all i ≥ 0, ((x1, . . . , xi) : xi+1xk) = ((x1, . . . , xi) :
xk).

In the following definition we generalize [7, Definition; page 297].

Definition 1.9. A d-sequence x1, . . . , xn is called aCM if the rings R/((x1, . . .,
xi) :R I) and R/(((x1, . . . , xi) :R I) + I) are aCM for all 0 ≤ i ≤ n− 1, where
I = (x1, . . . , xn).

In the sequel we recall the following example from [7, Example 2.1].

Example 1.10. Let X = (xij) be an r by s matrix (r ≤ s) of indeterminates
over a field k and let I be the ideal in k[xij ](xij) generated by the t by t minors
of X. Set R = k[xij ](xij)/I. Then the images of any row or column of X in R
form a CM d-sequence.

Theorem 1.11. Let (R,m) be an aCM local ring and x1, . . . , xn be an aCM
d-sequence. Then depthHi(x1, . . . , xn;R) ≥ i − 1 for all i ≥ 0 whenever
Hi(x1, . . . , xn;R) 6= 0.

Proof. Set I = (x1, . . . , xn). We proceed by induction on n. Clearly, if n = 1,
then by [1, Exercise 1.6.31], Hi(I;R) = 0 for all i > 1 and hence we have
nothing to prove. Let n > 1 and the assertion holds for all d-sequence of length
less than n. We consider two cases.

Case 1: Let k := grade I > 0. By [1, Exercise 1.6.31], Hi(I;R) = 0 for
all i > n − k, and Hi(I;R) 6= 0 for all 0 ≤ i ≤ n − k. Clearly, if n = k we
have nothing to prove. Let n > k. Since by [7, Remark 2.6], x1, . . . , xk is an
R-regular sequence then from [1, Theorem 1.6.16] it follows that Hn−k(I;R) ∼=
((x1,...,xk):RI)

(x1,...,xk)
. Hence, the exact sequence

0 −→ ((x1, . . . , xk) :R I)

(x1, . . . , xk)
−→ R

(x1, . . . , xk)
−→ R

((x1, . . . , xk) :R I)
−→ 0

yields that depthHn−k(I;R) ≥ dimR− k− 1, because by this exact sequence,
depth R

(x1,...,xk)
= depthR − k ≥ dimR − k − 1 and by Definition 1.9 we have

depth R
((x1,...,xk):RI) ≥ dim R

((x1,...,xk):RI) − 1. From [12, Theorem 2.3] it follows
that depth R

((x1,...,xk):RI) ≥ dimR − grade((x1, . . . , xk) :R I) − 2. Note that
grade((x1, . . . , xk) :R I) = k. Indeed, since (x1, . . . , xk) ⊆ ((x1, . . . , xk) :R I)
then grade((x1, . . . , xk) :R I) ≥ k. Let grade((x1, . . . , xk) :R I) > k. Thus,
there exists α ∈ ((x1, . . . , xk) :R I) such that α /∈ ZR(R/(x1, . . . , xk)). Now
since αI ⊆ (x1, . . . , xk) then there exists xk+1 ∈ I \ (x1, . . . , xk) such that
αxk+1 ⊆ (x1, . . . , xk). Since α /∈ ZR(R/(x1, . . . , xk)) then xk+1 ∈ (x1, . . . , xk).
But this is a contradiction with definition of a d-sequence. Hence

depthHn−k(I;R) ≥ n− k − 1.

Now, it remains to show that depthHi(I;R) ≥ i − 1 for all 0 ≤ i < n − k.
Consider the exact sequence

(]) 0 −→ Hn−k(I;R) −→ Hn−k(I,R) −→ Hn−k−1(I;R) −→ 0,
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where “−” denotes the canonical homomorphism fromR toR/(x1) andHn−k(I,
R) is the Koszul homology of the elements 0, x2, . . . , xn. Note that by in-
duction hypothesis, for all i we have depthHi(I,R) ≥ i − 1 as Hi(I,R) ∼=
Hi(x2, . . . , xn;R) ⊕ Hi−1(x2, . . . , xn;R) (see [7, Remark 1.4]). So, the exact
sequence (]) yields that depthHn−k−1(I;R) ≥ n − k − 2. Hence, the exact
sequence

0 −→ Hn−k−1(I;R) −→ Hn−k−1(I,R) −→ Hn−k−2(I;R) −→ 0

yields that depthHn−k−2(I;R) ≥ n− k− 3. Proceeding in this manner we get
depthHi(I;R) ≥ i− 1 for all 0 ≤ i < n− k, as required.

Case 2: Let grade I = 0. By [7, Lemma 1.1], for all i ≥ 0 we have the exact
sequence

(\) 0 −→ ⊕(0 :R I) −→ Hi(I;R) −→ Hi(I,R) −→ 0,

where “−” denotes the homomorphism from R to R/(0 : I) = R. By this exact
sequence, depth(0 :R I) ≥ i − 1, because by Definition 1.9, R/(0 :R I) is
aCM, and hence by [12, Theorem 2.3] we have depthR/(0 :R I) ≥ dimR/(0 :R
I) − 1 ≥ dimR − grade(0 :R I) − 2. Obversely grade(0 :R I) = 0 and so
from the exact sequence 0 −→ (0 :R I) −→ R −→ R/(0 :R I) −→ 0 we have
depth(0 :R I) ≥ dimR− 1. Consequently, from [7, Remark 2.4] it follows that
depth(0 :R I) ≥ dimR − 1 ≥ n − 1 ≥ i − 1. Since grade I ≥ 1, by using Case
1 and induction on n we have depthHi(I,R) ≥ i− 1. Now, the exact sequence
(\) yields that depthHi(I;R) ≥ i− 1 for all 0 ≤ i ≤ n. �

The following examples show that all almost Cohen-Macaulay R-modules
are not necessarily Cohen-Macaulay R-module.

Example 1.12. (i) Let k be a field. Set R := k[[y]] and M := k[[x, y]]/(x2, xy).
Then M is a finitely generated R-module as the set {1, x} generates M , where
“−” denotes the canonical homomorphism R[[x]] → M . So, we have dimM =
dimR/AnnRM = 1 as AnnRM = 0. Clearly, (y) ⊆ ZR(M), hence depthM =
0. Therefore, by [14, Lemma 1.2], it follows that M is an almost Cohen-
Macaulay R-module, however, it is not Cohen-Macaulay R-module.

(ii) Let k be a field. Set R :=k[[x, y, z]], andM :=K[[x, y, z]]/(x, y) ∩ (x, y, z)3.
Clearly, dimR = 3, dimM = 1 and depthM = 0. Thus, by [14, Lemma 1.2],
M is an almost Cohen-Macaulay R-module but it is not Cohen-Macaulay.

(iii) All finitely generated R-modules with dimM ≤ 1 are almost Cohen-
Macaulay.
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