Commun. Korean Math. Soc. 31 (2016), No. 4, pp. 695-701

http://dx.doi.org/10.4134/CKMS.c150240 pISSN: 1225-1763 / eISSN: 2234-3024

MINIMAXNESS AND COFINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY WITH RESPECT TO A PAIR OF IDEALS

FATEMEH DEHGHANI-ZADEH

ABSTRACT. Let I and J be two ideals of a commutative Noetherian ring R and M, N be two non-zero finitely generated R-modules. Let t be a non-negative integer such that $H^i_{I,J}(N)$ is (I,J)-minimax for all i < t. It is shown that the generalized local cohomology module $H^i_{I,J}(M,N)$ is (I,J)-Cofinite minimax for all i < t. Also, we prove that the R-module $Ext^j_R(R/I,H^i_{I,J}(N))$ is finitely generated for all $i \le t$ and j = 0,1.

1. Introduction

Throughout this paper, R is a commutative Noetherian local ring and I, J are ideals of R and M, N two R-modules. As a generalization of the local cohomology modules, Nam, Tri and Dong [7] (see also [2], [11]) introduced the local cohomology modules with respect to a pair of ideals (I, J). To more precise, let

$$W(I,J) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \, | \, I^n \subseteq \mathfrak{p} + J \text{ for some positive integer } n \}.$$

For an R-module M, the (I,J)-torsion submodule $\Gamma_{I,J}(M)$ of M, which consists of all elements x of M with $\operatorname{Supp}(Rx)\subseteq W(I,J)$, is considered. Let i be an integer, the generalized local cohomology functor $H^i_{I,J}(M,-)$ with respect to (I,J) is defined to be the i-th right derived functor of $\Gamma_{I,J}(\operatorname{Hom}(M,-))$. This is a generalization of the local cohomology functors $H^i_{I,J}(-)$ with respect to (I,J) and is also generalization of the generalized local cohomology functors $H^i_{I}(M,-)$. The i-th generalized local cohomology module of M, N with respect to (I,J) is denoted by $H^i_{I,J}(M,N)$. Henceforth, in this paper, M will denote a non-zero finitely generated R-module. Then, according to $[7, \operatorname{Proposition 2.2}]$, $\Gamma_{I,J}(\operatorname{Hom}(M,N)) = \operatorname{Hom}(M,\Gamma_{I,J}(N))$.

In [4], Grothedieck proposed the following conjecture:

Received December 15, 2015; Revised April 15, 2016. 2010 Mathematics Subject Classification. 13D45, 13E10, 13E99. Key words and phrases. local cohomology, minimax module, cofinite module. If I is an ideal of R and N is a finitely generated R-module, then $\operatorname{Hom}_R(R/I,H_I^i(N))$

is finitely generated for all i.

One year later, Hartshorne [5] provided a counterexample to Grothendieck's conjecture. He defined an R-module T to be I-cofinite if $\operatorname{Supp}(T) \subseteq V(I)$ and $\operatorname{Ext}^i_R(R/I,T)$ is finitely generated for all i and asked:

For which rings R and ideals I are the modules $H_I^i(N)$, I-cofinite for all i and all finitely generated modules N?

The aim of the present paper is to prove some results concerning cofiniteness of generalized local cohomology modules $H^i_{I,J}(M,N)$ $(i \in \mathbb{N}_0)$. More precisely, we shall show that:

Theorem 1.1. Let M and N be two finitely generated R-modules. Let I and J be two ideals of R and t be a non-negative integer such that $H^i_{I,J}(N)$ is (I,J)-minimax for all i < t. Then $H^i_{I,J}(M,N)$ is (I,J)-cofinite. In particular, the Goldie dimension of $H^i_{I,J}(M,N)$ is finite.

Recall that an R-module T is said to be (I, J)-cofinite if $\operatorname{Supp}(T) \subseteq W(I, J)$ and $\operatorname{Ext}^i_R(R/I, T)$ is finitely generated for all $i \geq 0$. Also, an R-module T is said to have finite Goldie dimension if T does not contain an infinite direct sum of non-zero submodules.

We say that an R-module T is (I, J)-minimax if the Goldie dimension of (I, J)-torsion submodule $\Gamma_{I,J}(T)$ of T is finite. One of our tools for proving Theorem 1.1 is the following:

Theorem 1.2. Let N be a finitely generated R-module. Let t be a non-negative integer such that $H^i_{I,J}(N)$ is (I,J)-minimax for all i < t. Then $H^i_{I,J}(N)$ is (I,J)-cofinite for all i < t and $Ext^j_R(R/I,H^i_{I,J}(N))$ is finitely generated for all $i \le t$ and j = 0,1.

We refer the reader to [1] or [10] for more details about local cohomology.

2. The results

For an R-module T, the Goldie dimension of T is defined as the cardinal of the set of indecomposable submodules of E(T) which appear in a decomposition of E(T) into a direct sum of indecomposable submodules.

In [13], H. Zöschinger introduced the class of minimax modules, and he has in [13] and [14] given many equivalent conditions for a module to be minimax. The R-module T is said to be minimax module if there is a finitely generated submodule T' of T such that T/T' is Artinian. On the other hand, it is known that when R is a Noetherian ring, a module is minimax if and only if each of its quotients has finite Goldie dimension, [14] or [12]. Let I be an ideal of R. An R-module T is said to be minimax with respect to I or I-minimax if the I-relative Goldie dimension of any quotient module of T is finite. Also,

an R-module T is said to have finite I-relative Goldie dimension if the Goldie dimension of the I-torsion submodule $\Gamma_I(T)$ of T is finite. In addition, we say that an R-module T is I-cominimax if the support of T is contained in V(I) and $\operatorname{Ext}^i_R(R/I,T)$ is I-minimax.

The definition of (I, J)-cofinite modules and I-minimax modules motivate the following definition.

Definition 2.1.

- (i) An R-module T is said to be (I, J)-minimax if the (I, J)-relative Goldie dimension of any quotient module of T is finite.
- (ii) An R-module T is said to be (I, J)-cominimax if support of T is contained in W(I, J) and $\operatorname{Ext}^i_R(R/I, T)$ is (I, J)-minimax.

Remark 2.2. It is easy to see that:

- (i) For a Noetherian ring R, the class of I-minimax R-modules contains the class of (I, J)-minimax R-modules and it contains the class of minimax R-modules.
- (ii) Let T be an I-torsion module. Then, by [3, Lemma 2.6] and [8, Lemma 3.1], T is minimax if and only if it is (I, J)-minimax if and only if it is I-minimax.
- (iii) Let T be an (I, J)-torsion module. Then, by the definition and [8, Lemma 3.1], T is minimax if and only if it is (I, J)-minimax.
- (iv) Let T be an (I, J)-cofinite. Then T is (I, J)-cominimax.

The following lemma is needed in the proof of the main theorem of this paper.

Lemma 2.3. Let T be an R-module. Then the following holds:

- (i) Let T be an Artinian module. If $\operatorname{Hom}(R/I,T)$ is finitely generated, then T is (I,J)-cofinite.
- (ii) Let T be a minimax module with support in W(I,J). If Hom(R/I,T) is finitely generated, then T is (I,J)-cofinite.
- (iii) Let $0 \longrightarrow T' \longrightarrow T \longrightarrow T'' \longrightarrow 0$ be an exact sequence of R-modules. Then T is an (I,J)-cofinite minimax module if and only if T' and T'' are both (I,J)-cofinite minimax modules. In particular, any quotient of an (I,J)-cofinite minimax module, as well as any finite direct sum of (I,J)-cofinite minimax modules, is (I,J)-cofinite minimax.
- (iv) Let T be an (I, J)-cofinite minimax and M a finitely generated Rmodule. Then $\operatorname{Ext}^i_R(M, T)$ is (I, J)-cofinite minimax for all $i \geq 0$.
- *Proof.* (i) Since, in view of the hypothesis, $\operatorname{Hom}(R/I,T)$ has finite length and $\operatorname{Supp}(T) \subseteq V(\mathfrak{m}) \subseteq V(I) \subseteq W(I,J)$. By using [6, Proposition 4.1], we can get $\operatorname{Ext}^i_R(R/I,T)$ is finitely generated for all $i \geq 0$, as required.
- (ii) Let T_1 be a finitely generated submodule of T such that $T_2 = T/T_1$ is Artinian and suppose that $\operatorname{Hom}(R/I,T)$ is finitely generated. Then exactness of $0 \to \operatorname{Hom}_R(R/I,T_1) \to \operatorname{Hom}_R(R/I,T_1) \to \operatorname{Hom}_R(R/I,T_1) \to \operatorname{Ext}^1_R(R/I,T_1)$

implies that $\operatorname{Hom}(R/I, T_2)$ is finitely generated. Hence we get from (i) that T_2 is Artinian and (I, J)-cofinite, therefore T is also (I, J)-cofinite.

- (iii) This follows from (ii) and [6, Corollary 4.4].
- (iv) Let

$$F_*: \cdots \longrightarrow F_n \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0$$

be a minimal free resolution of M. Then $\operatorname{Ext}_R^i(M,T)=H^i(\operatorname{Hom}_R(F_*,T))$ is subquotient of a direct sum of finitely many copies of T. Therefore, it follows from (iii) that $\operatorname{Ext}_R^i(M,T)$ is (I,J)-cofinite minimax for all $i\geq 0$.

Theorem 2.4. Let N be a finitely generated R-module. Let t be a non-negative integer, such that $H^i_{I,J}(N)$ is (I,J)-cofinite for all i < t. Then $Ext^j_R(R/I,H^i_{I,J}(N))$ is finitely generated for all $i \le t$ and j=0,1.

Proof. Consider Grothendieck spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/I, H_{I,J}^q(N)) \Longrightarrow_p \operatorname{Ext}_R^{p+q}(R/I, N).$$

For each $r \geq 2$ and i = 0, 1, we consider the exact sequence

(1)
$$0 \longrightarrow \ker d_r^{i,t} \longrightarrow E_r^{i,t} \xrightarrow{d_r^{i,t}} E_r^{i+r,t-r+1}.$$

It follows from hypothesis that the R module $E_r^{i+r,t-r+1}$ is finitely generated. Note that $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $p,q\in\mathbb{N}_0$. There is an integer $\ell\geq 2$ such that $E_\infty^{i,t}=E_r^{i,t}$ for all $r\geq \ell$. Also, there is a bounded filtration

$$0 = \varphi^{t+1}H^t \subseteq \varphi^t H^t \subseteq \dots \subseteq \varphi^1 H^t \subseteq \varphi^0 H^t = \operatorname{Ext}_R^t(R/I, N)$$

such that $E^{p,t-p}_{\infty}\cong \varphi^p H^t/\varphi^{p+1} H^t$ for all $p=0,1,\ldots,t$. Thus $E^{p,q}_{\infty}$ is finitely generated for all p,q. Since $E^{i,t}_{\ell}=(\ker d^{i,t}_{\ell-1}/\operatorname{im} d^{i-\ell+1,t+\ell-2}_{\ell-1})$ and $\operatorname{im} d^{i-\ell+1,t+\ell-2}_{\ell-1}=0$ (for all $\ell>2$ and i=0,1), it follows that $\ker d^{i,t}_{\ell-1}$ is finitely generated. Hence by using (1) for $r=\ell-1$, we deduce that $E^{i,t}_{\ell-1}$ is a finitely generated R-module. By continuing this argument repeatedly for integer $\ell-1,\ell-2,\ldots,3$ in stead of ℓ , we obtain that $E^{i,t}_2$ is a finitely generated R-module for i=0,1. This completes the proof.

Theorem 2.5. Let N be a finitely generated R-module. Let t be a non-negative integer, such that $H_{I,J}^i(N)$ is (I,J)-minimax for all i < t. Then $H_{I,J}^i(N)$ is (I,J)-cofinite for all i < t.

Proof. Remark 2.2 allows us to assume that $H^i_{I,J}(N)$ is minimax for all i < t. Now, we prove the result by induction on i. It is clear $H^0_{I,J}(N)$ is (I,J)-cofinite. Assume that i > 0 and the result holds true for smaller values than i. Thus we obtain that $H^j_{I,J}(N)$ is (I,J)-cofinite minimax for all $j \le i-1$ by the inductive hypothesis. Also, in view of Theorem 2.4, $\operatorname{Hom}(R/I, H^i_{I,J}(N))$ is finitely generated. Therefore by Lemma 2.3(ii), $H^i_{I,J}(N)$ is (I,J)-cofinite minimax. This completes proof.

Theorem 2.6. Let M, N be two finitely generated R-modules. Let t be a non-negative integer such that $H^i_{I,J}(N)$ is (I,J)-minimax for all i < t. Then $H^i_{I,J}(M,N)$ is (I,J)-cofinite minimax for all i < t. In particular, the Goldie dimension of $H^i_{I,J}(M,N)$ is finite for all i < t.

Proof. Let $G(-) = \Gamma_{I,J}(-)$ and $F(-) = \operatorname{Hom}(M,-)$ be functors from category of R-modules to itself. Then $FG(-) = \Gamma_{I,J}(M,-)$ and F is left exact. For any injective module E

$$R^i F(G(E)) = R^i \operatorname{Hom}_R(M, \Gamma_{I,J}(E)) = 0$$

for all i > 0, as $\Gamma_{I,J}(E)$ is an injective R-module. By [9, Theorem 10.47] there is a Grothendieck spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(M, H_{I,J}^q(N)) \Longrightarrow_p H_{I,J}^{p+q}(M, N).$$

Using Theorem 2.5, $H^i_{I,J}(N)$ is (I,J)-cofinite minimax for all i < t, and M is a finitely generated R-module hence $E_2^{p,q}$ is (I,J)-cofinite minimax for all $p \ge 0$ and q < t, see Lemma 2.3(iv). Since $E_i^{p,q}$ is a subquotient of $E_2^{p,q}$ for $i \ge 2$, by Lemma 2.3(iii), we deduce that $E_i^{p,q}$ is (I,J)-cofinite minimax for all $i \ge 2$, $p \ge 0$, and q < t. There is a finite filtration

$$0 = \varphi^{j+1}H^j \subseteq \varphi^jH^j \subseteq \dots \subseteq \varphi^1H^j \subseteq \varphi^0H^j = H^j_{I,I}(M,N)$$

such that $E_{\infty}^{i,j-i} \cong \varphi^i H^j/\varphi^{i+1} H^j$ for all $0 \leq i \leq j$. Since $E_i^{p,q} \cong E_{\infty}^{p,q}$ for i sufficiently large, we have that $E_{\infty}^{p,q}$ is (I,J)-cofinite minimax for all q < t. Hence, using the exact sequence

$$0 \longrightarrow \varphi^{i+1}H^j \longrightarrow \varphi^iH^j \longrightarrow E_{\infty}^{i,j-i} \longrightarrow 0 \qquad (0 \le i \le j)$$

we get that $H^{j}_{I,J}(M,N)$ is (I,J)-cofinite minimax for all j < t, and so

$$Gdim H_{I,I}^i(M,N)$$

is finite for all j < t.

The following corollary immediately follows by Theorem 2.6.

Corollary 2.7. Let M, N be two finitely generated R-modules. Let t be a non-negative integer such that $H^i_{I,J}(N)$ is Artinian for all i < t. Then $H^i_{I,J}(M, N)$ is (I, J)-cofinite for all i < t.

Proof. Apply Theorem 2.6 and the fact that the class of minimax modules includes all Artinian modules. \Box

Corollary 2.8. Let M, N be two finitely generated R-modules. Then

$$\inf\{i \mid H_{I,J}^i(N) \text{ is not } Artinian\} \leq \inf\{i \mid H_{I,J}^i(M,N) \text{ is not } Artinian\}.$$

Proof. In view of the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(M, H_{I,J}^q(N)) \Longrightarrow_p H_{I,J}^{p+q}(M, N),$$

the result follows by similar argument as used in Theorem 2.6.

Theorem 2.9. Let T be an R-module such that $Ext_R^j(R/I,T)$ is (I,J)-minimax for all j. If t is a non-negative integer such that $H_{I,J}^i(T)$ is (I,J)-cominimax for all $i \neq t$, then $H_{I,J}^t(T)$ is (I,J)-cominimax.

Proof. In view of Remark 2.2 and Definition 2.1 we may assume that

$$\operatorname{Ext}_R^j(R/I,T)$$

is minimax for all j and $\operatorname{Ext}_R^j(R/I,H^i_{I,J}(T))$ is minimax for all j and $i\neq t$. It is enough for us to show that the R-module $\operatorname{Ext}_R^j(R/I,H^t_{I,J}(T))$ is minimax for all j. Using [9, Theorem 10.47] there exists a Grothendieck, spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/I, H_{I,J}^q(T)) \Longrightarrow p \operatorname{Ext}_R^{p+q}(R/I, T).$$

Also, there is a bounded filtration

$$0 = \varphi^{n+1}H^n \subseteq \varphi^n H^n \subseteq \dots \subseteq \varphi^1 H^n \subseteq \varphi^0 H^n = \operatorname{Ext}_R^n(R/I, T)$$

such that $E_{\infty}^{i,n-i}\cong \varphi^iH^n/\varphi^{i+1}H^n$ for all $0\leq i\leq n$, and hence $E_{\infty}^{p,q}$ is minimax. Note that $E_{\infty}^{p,q}=E_r^{p,q}$ for large r and each p and q. It follows that there is an integer $\ell\geq 2$ such that $E_r^{p,q}$ is minimax for all $r\geq \ell$. We now argue by descending induction on ℓ . Now, assume that $2<\ell< r$ and that the claim holds for ℓ . Since $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $p,q\in\mathbb{N}_0$, the hypotheses give that $E_r^{p+r,t-r+1}$ is minimax for all $r\geq 2$. In addition, $E_\ell^{p,t}=(\ker d_{\ell-1}^{p,t}/\operatorname{im} d_{\ell-1}^{p-\ell+1,t+\ell-2})$ and $\operatorname{im} d_{\ell-1}^{p-\ell+1,t+\ell-2}$ are minimax for all $p\geq 0$. It follows that $\ker d_{\ell-1}^{p,t}$ is minimax for all $\ell>2$ and $p\geq 0$. Let $r\geq 2$ and $p\geq 0$, we consider the exact sequence

$$0 \longrightarrow \ker d_r^{p,t} \longrightarrow E_r^{p,t} \longrightarrow E_r^{p+r,t-r+1}.$$

Since $\ker d_{\ell-1}^{p,t}$ and $E_{\ell-1}^{p+\ell-1,t-\ell+2}$ are minimax, it follows that $E_{\ell-1}^{p,t}$ is minimax for $p\geq 0$. This completes the inductive step.

Acknowledgments. The author is extremely grateful to the referee for useful suggestions and comments which helped improve the presentation of the paper.

References

- [1] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Univ. Press, Cambridge, 1998.
- [2] F. Dehghani-Zadeh, Filter regular sequence and generalized local cohomology with respect to a pair of ideals, J. Math. Ext. 6 (2012), no. 4, 11–19.
- [3] K. Divaani-Aazar and M. A. Esmkhani, Artinianness of local cohomology modules of ZD-modules, Comm. Algebra 33 (2005), no. 8, 2857–2863.
- [4] A. Grothendieck, Cohomologie Locale des Faisceaux Coherénts et théorèmes de Lefschetz Locaux et Globaux, SGA2, North-Holland, Amsterdam, 1968.
- [5] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164.
- [6] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668
- [7] T. T. Nam, N. M. Tri, and N. V. Dong, Some properties of generalized local cohomology modules with respect to a pair of ideals, Internat. J. Algebra Comput. 24 (2014), no. 7, 1043–1054.

- [8] S. Payrovi and M. L. Parsa, Artinianness of local cohomology modules defined by a pair of ideals, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 4, 877–883.
- [9] J. Rotman, An Introduction to Homological Algebra, 2nd edition. Springer, 2009.
- [10] R. Takahashi, Y. Yoshino, and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra 213 (2009), no. 4, 582–600.
- [11] N. Zamani, Generalized local cohomology relative to (I,J), Southeast Asian Bull. Math. **35** (2011), no. 6, 1045–1050.
- [12] T. Zink, Endlichkeitsbedingungen für moduln über einem Noetherschen ring, Math. Nachr. 164 (1974), 239–252.
- [13] H. Zöschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1–32.
- [14] _____, überdie Maximalbedingung für radikalvolle Untermoduln, Hokkaido Math. J. 17 (1988), no. 1, 101–116.

FATEMEH DEHGHANI-ZADEH DEPARTMENT OF MATHEMATICS ISLAMIC AZAD UNIVERSITY YAZD BRANCH, YAZD, IRAN

E-mail address: fdzadeh@gmail.com, dehghanizadeh@iauyazd.ac.ir