KYUNGPOOK Math. J. 63(2023), 37-43 https://doi.org/10.5666/KMJ.2022.63.1.37 eISSN 0454-8124 pISSN 1225-6951 © Kyungpook Mathematical Journal

On the Local Cohomology and Formal Local Cohomology Modules

SHAHRAM REZAEI* AND BEHRUZ SADEGHI

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran e-mail: sha.rezaei@gmail.com and b-sadeqi@student.pnu.ac.ir

ABSTRACT. Let \mathfrak{a} and \mathfrak{b} be ideals of a commutative Noetherian ring R and M be a finitely generated R-module of dimension d > 0. We prove some results concerning the top local cohomology and top formal local cohomology modules. Among other things, we determine $\operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_\mathfrak{a}(M))$ and $\operatorname{Supp}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M))$. Also, we obtain some relations between $\operatorname{Ann}_R(\mathfrak{b} \operatorname{H}^d_\mathfrak{a}(M))$, $\operatorname{Att}_R(\mathfrak{b} \operatorname{H}^d_\mathfrak{a}(M))$ and $\operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_\mathfrak{a}(M))$ and we get similar results for $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M)$.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, \mathfrak{a} and \mathfrak{b} are ideals of R and M is a finitely generated R-module of dimension d. Recall that the *i*-th local cohomology module of M with respect to \mathfrak{a} is defined as:

$$\mathrm{H}^{i}_{\mathfrak{a}}(M) = \varinjlim_{n \in \mathbb{N}} \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M)$$

The reader can refer to [3], for the basic properties of local cohomology.

Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and M a finitely generated R-module. For each $i \geq 0$; $\mathfrak{F}^i_{\mathfrak{a}}(M) := \lim_{\mathfrak{m}} \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}^n M)$ is called the i-th formal local cohomology of M with respect to \mathfrak{a} . The basic properties of formal local cohomology modules

are found in [1], [9] and [2].

In [8], we studied local cohomology module $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)$ and formal local cohomology module $\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)$. In this paper, we obtain some new results about them. Here, we obtain some relations between $\operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M))$, $\operatorname{Att}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M))$ and

 $\operatorname{Supp}_{R}(\mathfrak{b}\operatorname{H}^{d}_{\mathfrak{a}}(M))$. Also, we get similar results for $\mathfrak{b}\mathfrak{F}^{d}_{\mathfrak{a}}(M)$.

We determine the support of the top local cohomology module $\mathfrak{b} \operatorname{H}^{\dim M}_{\mathfrak{a}}(M)$. More precisely, we will show that $\operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Supp}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b} M))$. Also,

^{*} Corresponding Author.

Received July 31, 2022; revised November 20, 2023; accepted January 17, 2023.

²⁰²⁰ Mathematics Subject Classification: 13D45, 14B15, 13E99.

Key words and phrases: formal local cohomology, local cohomology.

³⁷

we prove that for an arbitrary Noetherian local ring (R, \mathfrak{m}) , $\operatorname{Supp}_{R}(\mathfrak{b}\mathfrak{F}^{d}_{\mathfrak{a}}(M)) =$ $\operatorname{Supp}_{R}(\mathfrak{F}^{d}_{\mathfrak{a}}(\mathfrak{b}M)).$

2. Main Results

A non-zero R-module M is called secondary if its multiplication map by any element a of R is either surjective or nilpotent. A secondary representation for an R-module M is an expression for M as a finite sum of secondary submodules. If such a representation exists, we will say that M is representable. A prime ideal pof R is said to be an attached prime of M if $\mathfrak{p} = (N :_R M)$ for some submodule N of M. If M admits a reduced secondary representation, $M = S_1 + S_2 + \ldots + S_n$, then the set of attached primes $\operatorname{Att}_R(M)$ of M is equal to $\{\sqrt{0}:_R S_i: i = 1, \ldots, n\}$.

Recall that for any R-module M, the cohomological dimension of M with respect to an ideal \mathfrak{a} is defined as $\operatorname{cd}(\mathfrak{a}, M) = \max\{i : \operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0\}$ (see [5]). Also, $Assh_{R}M$ is defined as $\{\mathfrak{p} \in \operatorname{Ass}_R M : \dim R/\mathfrak{p} = \dim M\}$.

We need the following lemmas in the proof of main results.

Lemma 2.1. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M be a non-zero finitely generated *R*-module with finite dimension d > 0. Then $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) = 0$ if and only if $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M) =$ 0.

Proof. See [8, Theorem 2.3].

Lemma 2.2. Let \mathfrak{a} and \mathfrak{b} be two ideals of R. Let M be a non-zero finitely generated *R*-module with finite dimension d > 0 such that $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$. Then $\operatorname{cd}(\mathfrak{a}, M) =$ $\operatorname{cd}(\mathfrak{a},\mathfrak{b}M) = \dim(\mathfrak{b}M) = \dim M = d.$

Proof. See [8, Corollary 2.4].

The following theorem is a main result of [8] and has a key role in our proofs. **Theorem 2.3.** Let \mathfrak{a} and \mathfrak{b} be two ideals of R. Let M be a finitely generated *R*-module with dimension d > 0. Then

$$\begin{split} i) \ \operatorname{Ann}(\mathfrak{b} \operatorname{H}^{d}_{\mathfrak{a}}(M)) &= \operatorname{Ann}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)).\\ ii) \ \operatorname{Att}_{R}(\mathfrak{b} \operatorname{H}^{d}_{\mathfrak{a}}(M)) &= \operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)). \end{split}$$

Proof. i) See [8, Theorem 2.5].

ii) See [8, Theorem 2.15].

In the following, we obtain a generalization of [6, Theorem 2.6].

Theorem 2.4. Let M be a non-zero finitely generated R-module of dimension d, and let \mathfrak{b} be an ideal of R such that $\dim \mathfrak{b}M = d > 0$. If $T \subseteq \operatorname{Assh}_R(\mathfrak{b}M)$, then there exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = T$.

Proof. Let T be a subset of $Assh_R(\mathfrak{b}M)$. By [6, Theorem 2.6], there exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)) = T$. Therefore Theorem 2.3 (ii) implies that $\operatorname{Att}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = T$, as required.

Theorem 2.5. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be three ideals of a complete local ring (R, \mathfrak{m}) and M

a finitely generated R-module of dimension d > 0. Then

$$\operatorname{Att}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Att}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{c}(M)) \Leftrightarrow \operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{c}(M)).$$

Proof. Clearly, we can assume that $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$ and $\mathfrak{b} \operatorname{H}^d_{\mathfrak{c}}(M) \neq 0$ and so by Lemma 2.2 we have dim $\mathfrak{b}M = d$. Assume that $\operatorname{Att}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{c}}(M))$. Theorem 2.3 (ii) implies that $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{c}}(\mathfrak{b}M))$. By [4, Corollary 3.4], we conclude that $\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M) \cong \operatorname{H}^{d}_{\mathfrak{c}}(\mathfrak{b}M)$ and so $\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{c}}(\mathfrak{b}M))$. Thus by Theorem 2.3 (i) it follows that $\operatorname{Ann}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Ann}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{c}}(M))$. Conversely, let $\operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{c}(M)).$ By Theorem 2.3 (i), we have $\operatorname{Ann}_R\operatorname{H}^d_\mathfrak{a}(\mathfrak{b}M) =$ Ann_R $\operatorname{H}^{d}_{\mathfrak{c}}(\mathfrak{b}^{M})$. Then by Theorem [7, 2.9] we conclude that $\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}^{M}) \cong \operatorname{H}^{d}_{\mathfrak{c}}(\mathfrak{b}^{M})$ and so $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{c}}(\mathfrak{b}M)) = \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{c}}(\mathfrak{b}M))$. Now the result follows from Theorem 2.3,(ii).

Theorem 2.6. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module of dimension d > 0. Then

$$\operatorname{Supp}_{R}(\mathfrak{b}\operatorname{H}^{d}_{\mathfrak{a}}(M)) = \operatorname{Supp}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)).$$

Proof. By Lemma 2.1 we can assume that $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$ and $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M) \neq 0$. Thus, by Lemma 2.2 we have dim $_R(\mathfrak{b}M) = d$. By [3, 7.1.7], $\operatorname{H}^d_{\mathfrak{a}}(M)$ is artinian and so $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)$ is artinian. Thus $\operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) \subseteq \operatorname{Max}(R)$. Assume that $\mathfrak{m} \in \operatorname{Max}(R)$ such that $\mathfrak{m} \in \operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M))$. Thus $\mathfrak{b}_{\mathfrak{m}} \operatorname{H}^d_{\mathfrak{a}R_{\mathfrak{m}}}(M_{\mathfrak{m}}) \neq 0$ and so by [3, Theorem 6.4.1], it follows that dim $_{R_{\mathfrak{m}}}(M_{\mathfrak{m}}) = d$. By Lemma 2.1 we conclude that $\mathrm{H}^{d}_{\mathfrak{a}R_{\mathfrak{m}}}(\mathfrak{b}_{\mathfrak{m}}M_{\mathfrak{m}}) \neq 0$. Thus $\mathfrak{m} \in \operatorname{Supp}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M))$. Therefore

$$\operatorname{Supp}_{R}(\mathfrak{b}\operatorname{H}^{d}_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)).$$

Similar to the above method, we can show that

$$\operatorname{Supp}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M)) \subseteq \operatorname{Supp}_{R}(\mathfrak{b}\operatorname{H}^{d}_{\mathfrak{a}}(M))$$

and the proof is complete.

Corollary 2.7. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module of dimension d > 0. Let $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$. Then

$$\operatorname{Supp}_{R}(\mathfrak{b}\operatorname{H}^{d}_{\mathfrak{a}}(M)) = \{\mathfrak{m} \in \operatorname{Max} R : \exists \mathfrak{p} \in \operatorname{Assh}(\mathfrak{b}M) \, s.t \, \mathfrak{p} \subseteq \mathfrak{m}, \operatorname{cd}_{R_{\mathfrak{m}}}(\mathfrak{a}R_{\mathfrak{m}}, \frac{R_{\mathfrak{m}}}{\mathfrak{p}R_{\mathfrak{m}}}) = d\}.$$

Proof. The assertion follows immediately from Theorem 2.6 and [4, 2.7]. \square

Corollary 2.8. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be three ideals of R and M, N two finitely generated *R*-modules of dimension d > 0. If $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$ then

i) $\operatorname{Supp}_R(\mathfrak{b} \operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Supp}_R(\mathfrak{c} \operatorname{H}^d_\mathfrak{a}(N)).$

 \square

ii) Att_R(\mathfrak{b} H^d_{\mathfrak{q}}(M)) = Att_R(\mathfrak{c} H^d_{\mathfrak{q}}(N)).

Proof. Since $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$ we conclude that $\operatorname{cd}(\mathfrak{a}, \mathfrak{b}M) = \operatorname{cd}(\mathfrak{a}, \mathfrak{c}N)$ by [5, Theorem 2.2]. If $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) = 0$ then $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M) = 0$ and so $\operatorname{cd}(\mathfrak{a}, \mathfrak{b}M) < d$ by Lemma 2.1. Thus $\operatorname{cd}(\mathfrak{a}, \mathfrak{c}N) < d$ and so $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{c}N) = 0$. By Lemma 2.1, it follows that $\mathfrak{c}\operatorname{H}^d_{\mathfrak{a}}(N) = 0$ and the result follows in this case.

Now, assume that $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$. By Lemma 2.2 we have $\dim_R(\mathfrak{b}M) = \operatorname{cd}(\mathfrak{a}, \mathfrak{b}M) = d$. But $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$ implies that $\dim_R(\mathfrak{c}N) = \operatorname{cd}(\mathfrak{a}, \mathfrak{c}N) = d$ and $\operatorname{Assh}_R \mathfrak{b}M = \operatorname{Assh}_R \mathfrak{c}N$. Now Corollary 2.7 shows that, $\operatorname{Supp}_R \mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{Supp}_R \mathfrak{c} \operatorname{H}^d_{\mathfrak{a}}(N)$. On the other hand, since $\operatorname{Assh}_R(\mathfrak{b}M) = \operatorname{Assh}_R(\mathfrak{c}N)$ we have

$$\{\mathfrak{p} \in \operatorname{Assh}_R(\mathfrak{b}M) : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} = \{\mathfrak{p} \in \operatorname{Assh}_R(\mathfrak{c}N) : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\}.$$

Now, the result (ii) follows immediately from [8, Corollary 2.16], as required. \Box

In the above results, we saw that some basic properties of two *R*-modules $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)$ and $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)$ are the same. The following result shows that these two *R*-modules are isomorphic under certain conditions.

Theorem 2.9. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module of dimension d > 0. In each of the following cases, $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \cong \operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)$.

i) $\operatorname{cd}(\mathfrak{a}, M/\mathfrak{b}M) < d-1.$

 $ii) \mathfrak{b}M = M.$

iii) $\mathfrak{b} = Rx$ where x is a non-zerodivisor on M.

Proof. By Lemma 2.1 we can assume that $\mathfrak{b} \operatorname{H}^{d}_{\mathfrak{a}}(M) \neq 0$ and $\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M) \neq 0$. Thus, by Lemma 2.2, we have $\dim_{R}(\mathfrak{b}M) = \operatorname{cd}(\mathfrak{a}, M) = d$. Assume that $\mathfrak{c} := \operatorname{Ann}_{R} M$. Since $\operatorname{Supp}_{R}(R/\mathfrak{c}) = \operatorname{Supp}_{R}(M)$, by [5, Theorem 2.2] $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{c}) = \operatorname{cd}(\mathfrak{a}, M) = d$. Thus by the Independence Theorem ([3, Theorem 4.2.1]) $\operatorname{cd}(\mathfrak{a} R/\mathfrak{c}, R/\mathfrak{c}) = d$ and so $\operatorname{H}^{i}_{\mathfrak{a} R/\mathfrak{c}}(R/\mathfrak{c}) = 0$ for all i > d. It follows that $\operatorname{H}^{d}_{\mathfrak{a} R/\mathfrak{c}}(-)$ is a right exact functor on the category of R/\mathfrak{c} -modules and R/\mathfrak{c} -homomorphisms. Thus

$$\begin{split} \mathrm{H}^{d}_{\mathfrak{a}}(M)/\mathfrak{b} \, \mathrm{H}^{d}_{\mathfrak{a}}(M) &\simeq (\mathrm{H}^{d}_{\mathfrak{a}R/\mathfrak{c}}(R/\mathfrak{c}) \otimes_{R/\mathfrak{c}} M) \otimes_{R} R/\mathfrak{b} \\ &\simeq \mathrm{H}^{d}_{\mathfrak{a}R/\mathfrak{c}}(R/\mathfrak{c}) \otimes_{R/\mathfrak{c}} M/\mathfrak{b} M \\ &\simeq \mathrm{H}^{d}_{\mathfrak{a}}(M/\mathfrak{b} M). \end{split}$$

If $\operatorname{cd}(\mathfrak{a}, M/\mathfrak{b}M) < d-1$ then $\operatorname{H}^d_{\mathfrak{a}}(M/\mathfrak{b}M) = 0$ and so by the above isomorphism we conclude that $\operatorname{H}^d_{\mathfrak{a}}(M) = \mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)$. On the other hand, the exact sequence $0 \to \mathfrak{b}M \to M \to M/\mathfrak{b}M \to 0$ induces an exact sequence

$$\cdots \to \mathrm{H}^{d-1}_{\mathfrak{a}}(M/\mathfrak{b}M) \to \mathrm{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M) \to \mathrm{H}^{d}_{\mathfrak{a}}(M) \to \mathrm{H}^{d}_{\mathfrak{a}}(M/\mathfrak{b}M) \to 0.$$

Since $\operatorname{cd}(\mathfrak{a}, M/\mathfrak{b}M) < d-1$ we have $\operatorname{H}^{d-1}_{\mathfrak{a}}(M/\mathfrak{b}M) = \operatorname{H}^{d}_{\mathfrak{a}}(M/\mathfrak{b}M) = 0$ and so the above exact sequence implies that $\operatorname{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M) \cong \operatorname{H}^{d}_{\mathfrak{a}}(M)$. But, we showed that $\operatorname{H}^{d}_{\mathfrak{a}}(M) = \mathfrak{b} \operatorname{H}^{d}_{\mathfrak{a}}(M)$ and so the proof is complete in this case.

If $\mathfrak{b}M = M$ then $\mathrm{H}^{d}_{\mathfrak{a}}(M)/\mathfrak{b} \mathrm{H}^{d}_{\mathfrak{a}}(M) \simeq \mathrm{H}^{d}_{\mathfrak{a}}(M/\mathfrak{b}M) = 0$. Thus $\mathfrak{b} \mathrm{H}^{d}_{\mathfrak{a}}(M) = \mathrm{H}^{d}_{\mathfrak{a}}(M)$. Since $\mathfrak{b}M = M$ we have $\mathrm{H}^{d}_{\mathfrak{a}}(\mathfrak{b}M) = \mathrm{H}^{d}_{\mathfrak{a}}(M)$ and the result follows in this case.

Now assume that $\mathfrak{b} = Rx$ and x is a non-zerodivisor on M. The exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$ induces an exact sequence

$$\cdots \to \mathrm{H}^{d}_{\mathfrak{a}}(M) \xrightarrow{x} \mathrm{H}^{d}_{\mathfrak{a}}(M) \to \mathrm{H}^{d}_{\mathfrak{a}}(M/xM) \to 0.$$

Since dim M/xM = d - 1, by [3, 6.1.2] we have $\operatorname{H}^d_{\mathfrak{a}}(M/xM) = 0$. Thus, the above exact sequence implies that $x \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{H}^d_{\mathfrak{a}}(M)$. On the other hand, it is easy to see that the *R*-module homomorphism $\varphi : M \xrightarrow{x} xM$ is an isomorphism and it follows that $\operatorname{H}^d_{\mathfrak{a}}(M) \cong \operatorname{H}^d_{\mathfrak{a}}(xM)$. Therefore $x \operatorname{H}^d_{\mathfrak{a}}(M) \cong \operatorname{H}^d_{\mathfrak{a}}(xM)$, as required. \Box

In the remainder, we prove some results about $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)$. For our proofs, we need the following theorems.

Theorem 2.10. Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and M a finitely generated R-module. Then

$$\dim_R M/\mathfrak{a}M = \sup\{i \in \mathbb{N}_0 : \mathfrak{F}^i_{\mathfrak{a}}(M) \neq 0\}.$$

Proof. See [9, Theorem 4.5].

Theorem 2.11. Let \mathfrak{a} and \mathfrak{b} be two ideals of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0. Then

$$\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) = 0 \Longleftrightarrow \mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M) = 0$$

Proof. See [8, Theorem 3.3].

Corollary 2.12. Let \mathfrak{a} and \mathfrak{b} be two ideals of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0 such that $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) \neq 0$. Then $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M) \neq 0$ and $\dim(M/\mathfrak{a}M) = \dim(\mathfrak{b}M/\mathfrak{a}\mathfrak{b}M) = \dim\mathfrak{b}M = d$.

Proof. See [8, Corollary 3.4].

Theorem 2.13. Let \mathfrak{a} and \mathfrak{b} be two ideals of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0. Then

i) $\operatorname{Ann}(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \operatorname{Ann}(\mathfrak{F}^d_\mathfrak{a}(\mathfrak{b}M)).$

ii) Att_R($\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)$) = Att_R($\mathfrak{F}^d_\mathfrak{a}(\mathfrak{b}M)$).

Proof. i) See [8, Theorem 3.6].ii) See [8, Theorem 3.13].

Theorem 2.14. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be three ideals of a local ring (R, \mathfrak{m}) and M, N two finitely generated R-modules of dimension d > 0 such that $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$. Then $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \operatorname{Att}_R(\mathfrak{c}\mathfrak{F}^d_\mathfrak{a}(N))$.

Proof. If $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) = 0$ then by Theorem 2.11, $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M) = 0$ and so by Theorem 2.10, $\dim(\mathfrak{b}M/\mathfrak{a}\mathfrak{b}M) < d$. Since $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$ we conclude that

dim $(\mathfrak{c}N/\mathfrak{a}\mathfrak{c}N) < d$ and by Theorem 2.10, $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{c}N) = 0$. Therefore by Theorem 2.11, $\mathfrak{c}\mathfrak{F}^d_{\mathfrak{a}}(N) = 0$. Thus $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\mathfrak{c}\mathfrak{F}^d_{\mathfrak{a}}(N)) = \emptyset$ and so the result follows in this case.

Now, assume that $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) \neq 0$. If $\mathfrak{c}\mathfrak{F}^d_{\mathfrak{a}}(N) = 0$ then similar to the above argument it follows that $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) = 0$. Thus $\mathfrak{c}\mathfrak{F}^d_{\mathfrak{a}}(N) \neq 0$ and so by Corollary 2.12 we have dim $\mathfrak{b}M = \dim \mathfrak{c}N = d$. Since $\operatorname{Supp}_R(\mathfrak{b}M) = \operatorname{Supp}_R(\mathfrak{c}N)$ it is easy to see that $\operatorname{Assh}_R(\mathfrak{b}M) = \operatorname{Assh}_R(\mathfrak{c}N)$ and so $\operatorname{Assh}_R(\mathfrak{b}M) \cap \operatorname{Var}(\mathfrak{a}) = \operatorname{Assh}_R(\mathfrak{c}N) \cap \operatorname{Var}(\mathfrak{a})$. Therefore, by [8, Corollary 3.14], we have $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\mathfrak{c}\mathfrak{F}^d_{\mathfrak{a}}(N))$, as required.

Theorem 2.15. Let \mathfrak{b} be an ideal of a local ring (R, \mathfrak{m}) , and let M be a finitely generated R-module of dimension d > 0 such that $\dim_R(\mathfrak{b}M) = d$. If $T \subseteq \operatorname{Assh}_R(\mathfrak{b}M)$, then $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = T$ where $\mathfrak{a} := \bigcap_{\mathfrak{p}_i \in T} \mathfrak{p}_i$ is an ideal of R.

Proof. By [7, Theorem 2.2], $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = T$ where $\mathfrak{a} := \bigcap_{\mathfrak{p}_i \in T} \mathfrak{p}_i$ is an ideal of R. Now Theorem 2.13 (ii) implies that $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M)) = T$. \Box

Theorem 2.16. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be three ideals of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0. Then

$$\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{c}(M)) \Leftrightarrow \operatorname{Ann}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \operatorname{Ann}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{c}(M)).$$

Proof. \Rightarrow) : If $\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M) = 0$ then $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \emptyset$. By assumption we conclude that $\operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \emptyset$ and so $\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M) = 0$.

Now we assume that $\mathfrak{b}\mathfrak{F}_{\mathfrak{a}}^d(M) \neq 0$ and $\mathfrak{b}\mathfrak{F}_{\mathfrak{c}}^d(M) \neq 0$. Thus, by Corollary 2.12 dim $\mathfrak{b}M = d$ and by Theorem 2.13 (ii) and our assumption, we have $\operatorname{Att}_R(\mathfrak{F}_{\mathfrak{a}}^d(\mathfrak{b}M)) = \operatorname{Att}_R(\mathfrak{F}_{\mathfrak{c}}^d(\mathfrak{b}M))$. Therefore, by [2, 3.4], we have $\mathfrak{F}_{\mathfrak{a}}^d(\mathfrak{b}M) \cong \mathfrak{F}_{\mathfrak{c}}^d(\mathfrak{b}M)$. Thus $\operatorname{Ann}_R(\mathfrak{F}_{\mathfrak{a}}^d(\mathfrak{b}M)) = \operatorname{Ann}_R(\mathfrak{F}_{\mathfrak{c}}^d(\mathfrak{b}M))$ and so the assertion follows from Theorem 2.13 (i).

 $\Leftrightarrow): \text{ We can (and do) assume that } \mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) \neq 0 \text{ and } \mathfrak{b}\mathfrak{F}^d_{\mathfrak{c}}(M) \neq 0. \text{ Then, by}$ Theorem 2.13 (i) and our assumption, we have $\operatorname{Ann}_R(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Ann}_R(\mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M)).$ Therefore, by [6, Corollary 3.9 (i)], we conclude that $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M) \cong \mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M).$ Thus $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M)).$ Therefore, the assertion follows from Theorem 2.13 (ii). \Box

Theorem 2.17. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be three ideals of a complete local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0. Then

$$\operatorname{Att}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{c}(M)) \Leftrightarrow \operatorname{Ann}_R(\mathfrak{b}\operatorname{H}^d_\mathfrak{a}(M)) = \operatorname{Ann}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{c}(M)).$$

Proof. ⇒): We can assume that $\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M) \neq 0$ and $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{c}}(M) \neq 0$ and so dim $\mathfrak{b}M = d$. If $\operatorname{Att}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{c}}(M))$ then by Theorem 2.3 (ii) and Theorem 2.13 (ii) we conclude that $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M))$. By [7, Theorem 2.5], it follows that $\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M) \cong \mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M)$ and so $\operatorname{Ann}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Ann}_R(\mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b}M))$. Thus by Theorem 2.3 (i) and Theorem 2.13 (i) we have $\operatorname{Ann}_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Ann}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{c}}(M))$, as required. $\Leftarrow): Assume that Ann_R(\mathfrak{b} \operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Ann}_R(\mathfrak{b} \mathfrak{F}^d_{\mathfrak{c}}(M)). By Theorem 2.3 (i) and Theorem 2.13 (i), we have Ann_R \operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b} M) = \operatorname{Ann}_R \mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b} M). Then by [7, Corollary 2.9] we conclude that \operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b} M) \cong \mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b} M) \text{ and so } \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(\mathfrak{b} M)) = \operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{c}}(\mathfrak{b} M)). Now, the result follows from Theorem 2.3 (ii) and Theorem 2.13 (ii). \Box$

Theorem 2.18 Let \mathfrak{a} and \mathfrak{b} be two ideals of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d > 0. Then

$$\operatorname{Supp}_R(\mathfrak{b}\mathfrak{F}^d_\mathfrak{a}(M)) = \operatorname{Supp}_R(\mathfrak{F}^d_\mathfrak{a}(\mathfrak{b}M))$$

Proof. By Theorem 2.11, we can (and do) assume that $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) \neq 0$ and so by Corollary 2.12 we have $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M) \neq 0$ and dim $\mathfrak{b}M = d$. But, by [2, Lemma 2.2] $\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)$ is an artinian *R*-module and so $\operatorname{Supp}(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \{\mathfrak{m}\}$. On the other hand, $\mathfrak{F}^d_{\mathfrak{a}}(M)$ is artinian and so $\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M) \neq 0$ is artinian. Thus $\operatorname{Supp}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M)) = \{\mathfrak{m}\}$. Since $\operatorname{Supp}_R(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \{\mathfrak{m}\}$ we conclude that $\operatorname{Supp}_R(\mathfrak{F}^d_{\mathfrak{a}}(\mathfrak{b}M)) = \operatorname{Supp}_R(\mathfrak{b}\mathfrak{F}^d_{\mathfrak{a}}(M))$, as required. \Box

Acknowledgments. The author would like to thank the referee for careful reading and many useful suggestions.

References

- M. Asgharzadeh and K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, Comm. Algebra, 39(2011), 1082–1103.
- [2] M. H. Bijan-Zadeh and S. Rezaei, Artinianness and attached primes of formal local cohomology modules, Algebra Colloq., 21(2) (2014), 307–316.
- [3] M. P. Brodmann and R. Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge(1998).
- [4] K. Divaani-Aazar, Vanishing of the top local cohomology modules over Noetherian rings, Proc. Indian Acad. Sci. Math. Sci., 119(1)(2009), 23–35.
- [5] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc., 130(12)(2002), 3537–3544.
- [6] A. R. Nazari and F. Rastgoo, Top local cohomology and top formal local cohomology modules with specified attached primes, J. Algebr. Syst., 8(2)(2021), 155–164.
- [7] S. Rezaei Some results on top local cohomology and top formal local cohomology modules, Comm. Algebra, 45(5) (2017), 1935–1940.
- [8] S. Rezaei and B. Sadeghi, On the top local cohomology and formal local cohomology modules, Bull. Korean Math. Soc., 60(1)(2023), 149–160.
- P. Schenzel, On formal local cohomology and connectedness, J. Algebra, 315(2)(2007), 894–923.