Commun. Korean Math. Soc. **36** (2021), No. 1, pp. 1–10 https://doi.org/10.4134/CKMS.c200064 pISSN: 1225-1763 / eISSN: 2234-3024

AMALGAMATED MODULES ALONG AN IDEAL

Rachida El Khalfaoui, Najib Mahdou, Parviz Sahandi, and Nematollah Shirmohammadi

ABSTRACT. Let R and S be two commutative rings, J be an ideal of Sand $f: R \to S$ be a ring homomorphism. The amalgamation of R and Salong J with respect to f, denoted by $R \bowtie^f J$, is the special subring of $R \times S$ defined by $R \bowtie^f J = \{(a, f(a) + j) \mid a \in R, j \in J\}$. In this paper, we study some basic properties of a special kind of $R \bowtie^f J$ -modules, called the amalgamation of M and N along J with respect to φ , and defined by $M \bowtie^{\varphi} JN := \{(m, \varphi(m) + n) \mid m \in M \text{ and } n \in JN\}$, where $\varphi: M \to N$ is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. Let R and S be two rings, J be an ideal of S and $f: R \longrightarrow S$ be a ring homomorphism. D'Anna, Finocchiaro and Fontana in [3] and [4] introduced and studied the subring

$$R \bowtie^{f} J = \{(a, f(a) + j) \mid a \in R, j \in J\}$$

of $R \times S$ called the amalgamation of R and S along J with respect to f. Several classical constructions such as the R+XS[X], R+XS[[X]], the D+M constructions, and the amalgamated duplication of a ring along an ideal can be considered as particular cases of the amalgamated algebra (see [3, Examples 2.5 and 2.6]). Let I be an ideal of R. The amalgamated duplication of R along the ideal I was defined by $R \bowtie I := \{(a, a + i) : a \in R, i \in I\}$ [6].

One of the key tools for studying $R \bowtie^f J$ is based on the fact that the amalgamation can be studied in the frame of pullback constructions [3, Section 4]. This point of view allows the authors in [3,4] to provide an ample description of various properties of $R \bowtie^f J$, in connection with the properties of R, J and f. Namely, in [3], the authors studied the basic properties of this construction (e.g., characterizations for $R \bowtie^f J$ to be a Noetherian ring, an integral domain,

©2021 Korean Mathematical Society

Received February 19, 2020; Revised July 29, 2020; Accepted September 17, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 13E05, 13D05, 13D02.

Key words and phrases. Amalgamation of rings, Noetherian module, coherent module.

a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation.

Let R be a ring, I an ideal of R, and M an R-module. The authors of [2] recently introduced the duplication of the R-module M along the ideal I denoted by $M \bowtie I$ and gave the following definition

$$M \bowtie I = \{(m, m') \in M \times M \mid m - m' \in IM\}$$

which is an $R \bowtie I$ -module with the multiplication given by

 $(r, r+i) \cdot (m, m') = (rm, (r+i)m')$, where $r \in R, i \in I$, and $(m, m') \in M \bowtie I$.

If M = R, then the duplication of the *R*-module *R* along the ideal *I* coincides with the amalgamated duplication of the ring *R* along the ideal *I*. In their article, they studied some basic properties of the duplication of an *R*-module *M* along an ideal *I*. More precisely, they studied when $M \bowtie I$ is a Noetherian, an Artinian or an (Nil_{*}-)coherent $R \bowtie I$ -module. They also investigated some basic homological properties of $M \bowtie I$: when $M \bowtie I$ is an injective module, a projective module or a flat module.

In this paper we introduce the generalization of the duplication of modules along an ideal. Let $f : R \to S$ be a ring homomorphism, J be an ideal of S, M be an R-module, N be an S-module (which is an R-module induced naturally by f) and $\varphi : M \to N$ be an R-module homomorphism. We define the amalgamation of M and N along J with respect to φ by

$$M \bowtie^{\varphi} JN := \{ (m, \varphi(m) + n) \mid m \in M \text{ and } n \in JN \}.$$

It can be seen that $M \bowtie^{\varphi} JN$ is an $R \bowtie^{f} J$ -module by the following scalar product

$$(r, f(r) + j)(m, \varphi(m) + n) := (rm, \varphi(rm) + f(r)n + j\varphi(m) + jn).$$

Note that $\varphi(rm) = f(r)\varphi(m)$, since φ is an *R*-module homomorphism. If M = R, N = S and $\varphi = f$, then the amalgamation of the *R*-module *R* and the *S*-module *S* along *J* with respect to φ coincides with the amalgamation of rings *R* and *S* along *J* with respect to *f*. Also, if S = R, N = M and $\varphi = Id_M$, then the amalgamation of *M* and *N* along *J* with respect to φ is exactly the duplication of the *R*-module *M* along the ideal *J*. Hence, the notion of amalgamation of modules is a generalization of all the notions already mentioned.

In this paper, we study some basic properties of the amalgamation of modules. More precisely, we study when $M \bowtie^{\varphi} JN$ is a Noetherian or a coherent $R \bowtie^{f} J$ -module. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

Throughout the paper, $f: R \to S$ is a ring homomorphism, J an ideal of S, M an R-module, N an S-module and $\varphi: M \to N$ an R-module homomorphism.

2. Definition and basic properties

In this section, we present the basic properties of the amalgamation of Mand N along J with respect to φ , $M \bowtie^{\varphi} JN$.

One can define $M \bowtie^{\varphi} JN$ by means of pullback of modules. Indeed, let $\pi: N \to N/JN$ be a natural homomorphism, $M \bowtie^{\varphi} JN \to N$ (respectively, $M \bowtie^{\varphi} JN \to M$) be the restriction to $M \bowtie^{\varphi} JN$ of the projection of $M \times N$ onto N (respectively, M). It can be seen that the following diagram is a pullback:

$$\begin{array}{c} M \bowtie^{\varphi} JN \longrightarrow N \\ \downarrow \\ M \xrightarrow{\pi_{0,\varphi}} N/JN \end{array}$$

Remark 2.1. (1) f(R) + J is a subring of S. So, N is an f(R) + J-module. It is easy to see that $\varphi(M) + JN$ is an f(R) + J-submodule of N. Thus $\varphi(M) + JN$ is an $R \bowtie^f J$ -module via $P_S : R \bowtie^f J \to f(R) + J$ where $P_S(r, f(r) + j) = f(r) + j$.

(2) $\pi_N: M \bowtie^{\varphi} NJ \to \varphi(M) + JN$ given by $\pi_N(m, \varphi(m) + n) = \varphi(m) + n$ is an $R \bowtie^f J$ -module homomorphism.

(3) M is an $R \bowtie^f J$ -module via the surjective homomorphism $P_R : R \bowtie^f$ $J \to R$. It is easy to see that $\pi_M : M \bowtie^{\varphi} JN \to M$ given by $\pi_M(m, \varphi(m) + n) =$ m is an $R \bowtie^f J$ -module homomorphism.

(4) It can be seen that JN is an f(R) + J-submodule of $\varphi(M) + JN$. Hence JN is an $R \bowtie^f J$ -submodule of $\varphi(M) + JN$.

(5) We have the following exact sequence of $R \bowtie^f J$ -modules and $R \bowtie^f J$ homomorphisms:

$$0 \to JN \xrightarrow{\iota} M \Join^{\varphi} JN \xrightarrow{\pi_M} M \to 0,$$

where $\iota: JN \to M \Join^{\varphi} JN$ given $\iota(n) = (0, n)$.

Proposition 2.2. Let $f : R \to S$ be a ring homomorphism, J be an ideal of S, M be an R-module, N be an S-module and $\varphi: M \to N$ an R-module homomorphism. Then the following hold:

- (1) $\frac{M \boxtimes^{\varphi} JN}{\{0\} \times JN} = M.$ (2) $\frac{M \boxtimes^{\varphi} JN}{F \boxtimes^{\varphi} JN} = \frac{M}{F}, \text{ where } F \text{ is a submodule of } M.$ (3) $\frac{M \boxtimes^{\varphi} JN}{\varphi^{-1}(JN) \times \{0\}} = \varphi(M) + JN.$

Proof. Let $\pi_M : M \bowtie^{\varphi} JN \to M; (m, \varphi(m) + n) \mapsto m, \psi : M \bowtie^{\varphi} JN \to \frac{M}{F};$ $(m,\varphi(m)+n)\mapsto \overline{m} \text{ and } \pi_N: M \bowtie^{\varphi} JN \to \varphi(M) + JN; (m,\varphi(m)+n) \mapsto$ $\varphi(m) + n$. The three homomorphisms are surjective with ker $(\pi_M) = \{0\} \times JN$, $\ker(\psi) = F \Join^{\varphi} JN$ and $\ker(\pi_N) = \varphi^{-1}(JN) \times \{0\}$. Hence, we have the desired isomorphisms. \square

Remark 2.3. If we consider *R*-modules in Proposition 2.2 as $R \bowtie^f J$ -modules, then the isomorphisms are also $R \bowtie^f J$ -isomorphisms.

We have the following results about localization.

4

Proposition 2.4. With the notation of Proposition 2.2, the following statements hold:

(1) For $\mathfrak{p} \in \operatorname{Spec}(R)$ and $\mathfrak{q} \in \operatorname{Spec}(S) \setminus V(J)$, set

$$\mathfrak{p}'^{f} := \mathfrak{p} \bowtie^{f} J := \{ (p, f(p) + j) \mid p \in \mathfrak{p}, j \in J \},$$
$$\overline{\mathfrak{q}}^{f} := \{ (r, f(r) + j) \mid r \in R, j \in J, f(r) + j \in \mathfrak{q} \}.$$

Then, one has the following:

- (a) The prime ideals of $R \bowtie^f J$ are of the type $\overline{\mathfrak{q}}^f$ or $\mathfrak{p}'{}^f$, for \mathfrak{q} varying in $\operatorname{Spec}(S) \setminus V(J)$ and \mathfrak{p} in $\operatorname{Spec}(R)$.
- (b) $\operatorname{Max}(R \bowtie^f J) = \{ \mathfrak{p}'_f \mid \mathfrak{p} \in \operatorname{Max}(R) \} \cup \{ \overline{\mathfrak{q}}^f \mid \mathfrak{q} \in \operatorname{Max}(S) \setminus V(J) \}.$
- (2) The following formulas for localizations hold:
 - (a) For any $\mathbf{q} \in \operatorname{Spec}(S) \setminus V(J)$, the localization $(M \bowtie^{\varphi} JN)_{\overline{\mathbf{q}}^f}$ is canonically isomorphic to $N_{\mathbf{q}}$. This isomorphism maps the element $(x, \varphi(x) + y)/(r, f(r) + j)$ to $(\varphi(x) + y)/(f(r) + j)$.
 - (b) For any p∈ Spec(R) \ V(f⁻¹(J)), the localization (M ⋈^φ JN)_{p'f} is canonically isomorphic to M_p. This isomorphism maps the element (x, φ(x) + y)/(r, f(r) + j) to x/r.
 - (c) For any $\mathfrak{p} \in \operatorname{Spec}(R)$ containing $f^{-1}(J)$, consider the multiplicative subset $T_{\mathfrak{p}} := f(R \setminus \mathfrak{p}) + J$ of S and set $N_{T_{\mathfrak{p}}} := T_{\mathfrak{p}}^{-1}N$ and $J_{T_{\mathfrak{p}}} := T_{\mathfrak{p}}^{-1}J$. If $f_{\mathfrak{p}} : R_{\mathfrak{p}} \to S_{T_{\mathfrak{p}}}$ is the ring homomorphism induced by f and $\varphi_{\mathfrak{p}} : M_{\mathfrak{p}} \to N_{T_{\mathfrak{p}}}$ is the $R_{\mathfrak{p}}$ -homomorphism induced by φ , then the $R_{\mathfrak{p}}$ -module $(M \bowtie^{\varphi} JN)_{\mathfrak{p}'f}$ is canonically isomorphic to $M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}}N_{T_{\mathfrak{p}}}$. This isomorphism maps the element (x, f(x) + y)/(r, f(r) + j) to (x/r, (f(x) + y)/(f(r) + j)).

Proof. (1) is taken from [5, Corollaries 2.5 and 2.7]. For (2), we only prove (c). It is clear that $\psi : (M \bowtie^{\varphi} JN)_{\mathfrak{p}'f} \to M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}}N_{T_{\mathfrak{p}}}$ which sends (x, f(x)+y)/(r, f(r)+j) to (x/r, (f(x)+y)/(f(r)+j)) is a well defined $(R \bowtie^{f} J)_{\mathfrak{p}'f}$ -module homomorphism. To prove that ψ is one to one, assume that (x/r, (f(x)+y)/(f(r)+j)) = 0. Then x/r = 0 in $M_{\mathfrak{p}}$ and (f(x)+y)/(f(r)+j) = 0 in $N_{T_{\mathfrak{p}}}$. Hence there exist $r'' \in R \setminus \mathfrak{p}$ and $f(t) + u \in T_{\mathfrak{p}}$ such that r''x = 0 and $(f(t)+u)(\varphi(x)+y) = 0$. So we have $(r'', f(r''))(t, f(t)+u)(x, \varphi(x)+y) = (0, 0)$. This shows that (x, f(x)+y)/(r, f(r)+j) = 0 and so ψ is one to one. Assume finally that $(x/r, \varphi_{\mathfrak{p}}(x/r) + y/(f(r') + j)) \in M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}}N_{T_{\mathfrak{p}}}$. Then

$$\begin{aligned} & (x/r, \varphi_{\mathfrak{p}}(x/r) + y/(f(r') + j)) \\ &= (x/r, \varphi_{\mathfrak{p}}(x/r)) + (0, y/(f(r') + j)) \\ &= \psi((x, \varphi(x))/(r, f(r)) + \psi((0, y)/(r', f(r') + j)). \end{aligned}$$

It follows that ψ is surjective.

3. Noetherian property

In [3, Propositions 5.6 and 5.7], the authors determined the Noetherian property of the amalgamated algebra $R \bowtie^f J$. We will now see when the amalgamation of two modules along an ideal is Noetherian.

Proposition 3.1. With the notation of Proposition 2.2, the amalgamation $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^{f} J$ -module if and only if $\varphi(M) + JN$ is a Noetherian f(R) + J-module and M is a Noetherian R-modules.

Proof. (\Rightarrow) Using the homomorphism π_N , $\varphi(M) + JN$ is a Noetherian $R \bowtie^f J$ -module. Hence $\varphi(M) + JN$ is a Noetherian f(R) + J-module. Also M is a Noetherian $R \bowtie^f J$ -module using π_M . Hence M is a Noetherian R-module using P_R .

 (\Leftarrow) Since $\varphi(M) + JN$ is a Noetherian f(R) + J-module, then $\varphi(M) + JN$ is a Noetherian $R \bowtie^f J$ -module. Hence JN is a Noetherian $R \bowtie^f J$ -module. Also M is a Noetherian $R \bowtie^f J$ -module. Therefore $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^f J$ -module (cf. Part 5 of Remark 2.1).

Proposition 3.2. With above notation, assume that at least one of the following conditions holds:

- (1) JN is a Noetherian R-module (with the structure naturally induced by f).
- (2) $\varphi(M) + JN$ is a Noetherian *R*-module (with the structure naturally induced by f).

Then $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^{f} J$ -module if and only if M is a Noetherian R-module. In particular, if M is a Noetherian R-module and N is a Noetherian R-module (with the structure naturally induced by f), then $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^{f} J$ -module for all ideals J of S.

Proof. Proposition 3.1 implies, without any extra assumption, that M is a Noetherian R-module if $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^{f} J$ -module. Conversely, assume that M is a Noetherian R-module. One can easily see that (1) follows from (2). So assume that (1) holds. Since M and JN are Noetherian R-modules, they are Noetherian $R \bowtie^{f} J$ -modules. Then by Remark 2.1(5), we obtain that $M \bowtie^{\varphi} JN$ is a Noetherian $R \bowtie^{f} J$ -module.

4. Coherent property

Let $f: R \to S$ be a ring homomorphism, J be an ideal of S, M be an R-modules, N be an S-module and $\varphi: M \to N$ be an R-module homomorphism and let n be a positive integer. Consider the function $\varphi^n: M^n \to N^n$ defined by $\varphi^n((m_i)_{i=1}^{i=n}) = (\varphi(m_i))_{i=1}^{i=n}$. Obviously, φ^n is an R-module homomorphism, and $JN^n = (JN)^n$ is a submodule of N^n . This allows us to define $M^n \bowtie^{\varphi^n} (JN)^n$.

We recall that the S-module N is an R-module induced by f, so it is the same for N^n . Hence, rx = f(r)x for all $r \in R$ and $x \in N^n$ and so

 $\varphi^n(rm) = r\varphi^n(m) = f(r)\varphi^n(m)$ for all $r \in R$ and $x \in N^n$.

6 R. EL KHALFAOUI, N. MAHDOU, P. SAHANDI, AND N. SHIRMOHAMMADI

We will use this in the proof of the following proposition.

Proposition 4.1. Let F be a submodule of M^n . Then the following hold:

- (1) Assume that F is a finitely generated R-module and JN is a finitely generated (f(R) + J)-module. Then $F \bowtie^{\varphi^n} (JN)^n$ is a finitely generated $R \bowtie^f J$ -module.
- (2) Suppose that $\varphi^n(F) \subseteq (JN)^n$. Then $F \bowtie^{\varphi^n} (JN)^n$ is a finitely generated $R \bowtie^f J$ -module if and only if F is a finitely generated R-module and JN is a finitely generated (f(R) + J)-module.

Proof. (1) Assume that $F = \sum_{i=1}^{m} Rf_i$, where $f_i \in F$ for all $i \in \{1, 2, ..., m\}$. Also let $(JN)^n = \sum_{i=1}^{m} (f(R) + J)n_i$ where $n_i \in (JN)^n$ since JN is a finitely generated (f(R) + J)-module. We claim that $F \bowtie^{\varphi^n} (JN)^n = \sum_{i=1}^{m} (R \bowtie^f J)(f_i, \varphi^n(f_i)) + \sum_{i=1}^{m} (R \bowtie^f J)(0, n_i)$. Indeed, $\sum_{i=1}^{m} (R \bowtie^f J)(f_i, \varphi^n(f_i)) + \sum_{i=1}^{m} (R \bowtie^f J)(0, n_i) \subseteq F \bowtie^{\varphi^n} (JN)^n$ since $(f_i, \varphi^n(f_i)) \in F \bowtie^{\varphi^n} (JN)^n$ and $(0, n_i) \in F \bowtie^{\varphi^n} (JN)^n$ for all $i \in \{1, 2, ..., m\}$. Let $(x, \varphi^n(x) + k) \in F \bowtie^{\varphi^n} (JN)^n$ where $x \in F$ and $k \in (JN)^n$. Then $x = \sum_{i=1}^{m} a_i f_i$ and $k = \sum_{i=1}^{m} (f(b_i) + j_i)n_i$ where $a_i \in R$ and $(f(b_i) + j_i) \in (f(R) + J)$ for all $i \in \{1, 2, ..., m\}$. Hence

$$(x,\varphi^{n}(x)+k) = \left(\sum_{i=1}^{m} a_{i}f_{i},\varphi^{n}(\sum_{i=1}^{m} a_{i}f_{i}) + \sum_{i=1}^{m} (f(b_{i})+j_{i})n_{i}\right)$$

$$= \left(\sum_{i=1}^{m} a_{i}f_{i},\sum_{i=1}^{m} f(a_{i})\varphi^{n}(f_{i}) + \sum_{i=1}^{n} (f(b_{i})+j_{i})n_{i}\right)$$

$$= \sum_{i=1}^{m} (a_{i}f_{i},f(a_{i})\varphi^{n}(f_{i})) + \sum_{i=1}^{m} (0,(f(b_{i})+j_{i})n_{i})$$

$$= \sum_{i=1}^{m} (a_{i},f(a_{i}))(f_{i},\varphi^{n}(f_{i})) + \sum_{i=1}^{m} (b_{i},f(b_{i})+j_{i})(0,n_{i}).$$

Therefore, $(x, \varphi^n(x) + k) \in \sum_{i=1}^m (R \bowtie^f J)(f_i, \varphi^n(f_i)) + \sum_{i=1}^m (R \bowtie^f J)(0, n_i)$ and so $F \bowtie^{\varphi^n} (JN)^n = \sum_{i=1}^m (R \bowtie^f J)(f_i, \varphi^n(f_i)) + \sum_{i=1}^m (R \bowtie^f J)(0, n_i)$ is a finitely generated $R \bowtie^f J$ -module as desired.

(2) Suppose that $\varphi^n(F) \subseteq (JN)^n$. If F is a finitely generated R-module and JN is a finitely generated (f(R) + J)-module, then $F \bowtie^{\varphi^n} (JN)^n$ is a finitely generated $R \bowtie^f J$ -module by (1). Conversely, assume that $F \bowtie^{\varphi^n} (JN)^n$ is a finitely generated $R \bowtie^f J$ -module. Then, there exist $f_i \in F$ and $n_i \in (JN)^n$ for $i \in \{1, 2, \ldots, n\}$ such that $F \bowtie^{\varphi^n} (JN)^n = \sum_{i=1}^m (R \bowtie^f J)(f_i, \varphi^n(f_i) + n_i)$. So $F = \sum_{i=1}^m Rf_i$. On the other hand, we claim that $(JN)^n = \sum_{i=1}^m (f(R) + J)(\varphi^n(f_i) + n_i)$. Indeed, let $k \in (JN)^n$. Then $(0, k) = \sum_{i=1}^m (a_i, f(a_i) + j_i)(f_i, \varphi^n(f_i) + n_i)$ for some $a_i \in R$ and $j_i \in J$. Hence $k = \sum_{i=1}^m (f(R) + J)(\varphi^n(f_i) + n_i) \in \sum_{i=1}^m (f(R) + J)(\varphi^n(f_i) + n_i)$. Since $\varphi^n(F) \subseteq (JN)^n$, then $\varphi^n(f_i) \in (JN)^n$ for all $i \in \{1, 2, \ldots, m\}$ and so $(\varphi^n(f_i) + n_i) \in (JN)^n$ for all $i \in \{1, 2, \ldots, m\}$. Hence

 $\sum_{i=1}^{m} (f(R) + J)(\varphi^{n}(f_{i}) + n_{i}) \subseteq (JN)^{n}.$ Therefore, $(JN)^{n} = \sum_{i=1}^{m} (f(R) + J)(\varphi^{n}(f_{i}) + n_{i})$ is a finitely generated f(R) + J-module and so JN is a finitely generated f(R) + J-module.

Recall that an R-module M is called a *coherent* R-module if it is finitely generated and every finitely generated submodule of M is finitely presented.

Theorem 4.2. (1) Assume that JN is a finitely generated f(R) + J-module. If $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module, then M is a coherent R-module.

(2) Assume that J is a finitely generated ideal of f(R)+J and φ is surjective. If $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module, then M is a coherent R-module.

(3) Assume that J and JN are finitely generated f(R) + J-modules and $\varphi^{-1}(JN)$ is a finitely generated R-module. Then $M \Join^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module if and only if M is a coherent R-module and $\varphi(M) + JN$ is a coherent f(R) + J-module.

(4) Assume that J is a finitely generated f(R) + J-module, φ is surjective and $\varphi^{-1}(JN)$ is a finitely generated R-module. Then $M \Join^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module if and only if M is a coherent R-module and $\varphi(M) + JN$ is a coherent f(R) + J-module.

To prove Theorem 4.2, we need to establish the following lemmas. Before this, we recall the following well-known fact. Let $g: A \to B$ be a surjective ring morphism with kernel K. If T is an A-module annihilated by K, then T is canonically a B-module and AX = BX for each subset X of T (let us say that the A-module structure on T is essentially the same as the B-module structure on T).

Lemma 4.3. (1) $\{0\} \times JN$ is a finitely generated $R \bowtie^f J$ -module if and only if JN is a finitely generated f(R) + J-module.

(2) $\varphi^{-1}(JN) \times \{0\}$ is a finitely generated $R \bowtie^f J$ -module if and only if $\varphi^{-1}(JN)$ is a finitely generated R-module.

(3) If $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module and $\varphi^{-1}(JN)$ is a finitely generated R-module, then $\varphi(M) + JN$ is a coherent f(R) + J-module.

Proof. (1) Consider the second component projection from $R \bowtie^f J$ to f(R)+J. Then, for each subset X of the $R \bowtie^f J$ -module $\{0\} \times JN$, one has $(R \bowtie^f J)X = (f(R) + J)X$.

(2) Consider the first component projection from $R \bowtie^f J$ to R. Then, for each subset X of the $R \bowtie^f J$ -module $\varphi^{-1}(JN) \times \{0\}$, one has $(R \bowtie^f J)X = RX$.

(3) Suppose that $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module and $\varphi^{-1}(JN)$ is a finitely generated R-module. Then $\varphi^{-1}(JN) \times \{0\}$ is a finitely generated $R \bowtie^{f} J$ -module by (1). By Proposition 2.2, $\frac{M \bowtie^{\varphi} JN}{\varphi^{-1}(JN) \times \{0\}} = \varphi(M) + JN$ and so $\varphi(M) + JN$ is a coherent $R \bowtie^{f} J$ -module by [7, Theorem 2.2.1], and since f(R) + J is a finitely generated $R \bowtie^{f} J$ -module $(f(R) + J \cong \{0\} \times (f(R) + J) = (R \bowtie^{f} J)(0, 1))$, then $\varphi(M) + JN$ is a coherent (f(R) + J)-module by [7, Theorem 2.2.7].

Lemma 4.4. Assume that J and $\varphi^{-1}(JN)$ are a finitely generated (f(R)+J)module and an R-module, respectively. If M is a coherent R-module, then $\varphi^{-1}(JN) \times \{0\}$ is a coherent $R \bowtie^f J$ -module.

Proof. Since $\varphi^{-1}(JN)$ is a finitely generated *R*-module, then $\varphi^{-1}(JN) \times \{0\}$ is a finitely generated $R \bowtie^f J$ -module. It remains to show that every finitely generated submodule of $\varphi^{-1}(JN) \times \{0\}$ is finitely presented. Assume that M is a coherent *R*-module and let K be a finitely generated submodule of $\varphi^{-1}(JN) \times \{0\}$. Then $K = F \times \{0\}$ where $F = \sum_{i=1}^{n} Rf_i$ for some positive integer n and $f_i \in F$. Consider the exact sequence of *R*-modules

$$0 \to \ker v \to R^n \to F \to 0$$

where $v((a_i)_{i=1}^{i=n}) = \sum_{i=1}^n a_i f_i$. We have $K = \sum_{i=1}^n (R \bowtie^f J)(f_i, 0)$. Consider the exact sequence of $R \bowtie^f J$ -module

$$0 \to \ker u \to (R \bowtie^f J)^n \to K \to 0,$$

where $u((a_i, f(a_i) + j_i)_{i=1}^{i=n}) = \sum_{i=1}^n (a_i, f(a_i) + j_i)(f_i, 0)$. Then

$$\ker u = \{ (a_i, f(a_i) + j_i)_{i=1}^{i=n} \in (R \bowtie^f J)^n \mid \sum_{i=1}^n a_i f_i = 0 \}$$
$$= \{ ((a_i)_{i=1}^{i=n}, f^n((a_i)_{i=1}^{i=n}) + (j_i)_{i=1}^{i=n}) \in R^n \bowtie^{f^n} J^n \mid (a_i)_{i=1}^{i=n} \in \ker v \}$$
$$= \ker v \bowtie^{f^n} J^n.$$

The second equality follows from the isomorphism $(R \bowtie^f J)^n \cong R^n \bowtie^{f^n} J^n$ [1, Page 3].

Since F is a submodule of M and M is coherent, then F is a finitely presented R-module and so ker v is finitely generated by the first sequence. Hence ker $u = \ker v \bowtie^{f^n} J^n$ is a finitely generated $R \bowtie^f J$ -module by [1, Lemma 2.4(1)]. Therefore, K is a finitely presented $R \bowtie^f J$ -module by the second sequence and hence $\varphi^{-1}(JN) \times \{0\}$ is a coherent $R \bowtie^f J$ -module.

Proof of Theorem 4.2. (1) Assume that JN is a finitely generated f(R) + Jmodule. Suppose that $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module. We have $\frac{R\bowtie^{f} J}{0 \times J} = R$ by [4, Proposition 2.1]. Hence, using [7, Theorem 2.4.1], to prove that M is a coherent R-module it suffices to prove that it is coherent as an $R \bowtie^{f} J$ -module. Since JN is a finitely generated f(R) + J-module, then $0 \times JN$ is a finitely generated $R \bowtie^{f} J$ -module. Hence, using Proposition 2.2 and [7, Theorem 2.2.1] our result follows immediately.

(2) Assume that J is a finitely generated ideal of f(R) + J. Suppose that $M \Join^{\varphi} JN$ is a coherent $R \Join^{f} J$ -module. As in (1), using [7, Theorem 2.4.1], to prove that M is a coherent R-module it suffices to prove that it is coherent as an $R \Join^{f} J$ -module. We first show that $(\{0\} \times J)(M \Join^{\varphi} JN) = 0 \times JN$. Indeed, it is clear that $(\{0\} \times J)(M \Join^{\varphi} JN) \subseteq \{0\} \times JN$. Now, let $(0, n) \in \{0\} \times JN$. Then $n = \sum_{i=1}^{n} j_{i}n_{i}$ where $j_{i} \in J$ and $n_{i} \in N$. Since φ is surjective, then for each n_{i} there exists m_{i} such that $\varphi(m_{i}) = n_{i}$. Hence (0, n) =

 $\sum_{i=1}^{n} (0, j_i)(m_i, \varphi(m_i)) \in (\{0\} \times J)(M \bowtie^{\varphi} JN); \text{ so that } (\{0\} \times J)(M \bowtie^{\varphi} JN) = 0 \times JN. \text{ Thus, } 0 \times JN \text{ is a finitely generated } R \bowtie^f J\text{-module since } (\{0\} \times J) \text{ and } M \bowtie^{\varphi} JN \text{ are finitely generated } R \bowtie^f J\text{-modules. It follows from Proposition 2.2 and } [7, Theorem 2.2.1] \text{ that } M \text{ is a coherent } R \bowtie^f J\text{-module.}$

(3) Assume that J and JN are finitely generated f(R) + J-modules and $\varphi^{-1}(JN)$ a finitely generated R-module. Suppose that $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module. Then M is a coherent R-module by (1) and $\varphi(M) + JN$ is a coherent f(R) + J-module by Lemma 4.3(2). Conversely, suppose that M is a coherent R-module and $\varphi(M) + JN$ is a coherent f(R) + J-module. Then $\varphi^{-1}(JN) \times \{0\}$ is a coherent $R \bowtie^{f} J$ -module by Lemma 4.4. By Proposition 2.2, $\frac{M \bowtie^{\varphi} JN}{\varphi^{-1}(JN) \times \{0\}} = \varphi(M) + JN$. Hence, $M \bowtie^{\varphi} JN$ is coherent by [7, Theorem 2.2.1].

(4) Assume that J is a finitely generated f(R)+J-module, φ is surjective and $\varphi^{-1}(JN)$ a finitely generated R-module. Suppose that $M \bowtie^{\varphi} JN$ is a coherent $R \bowtie^{f} J$ -module. Then, M is a coherent R-module by (2) and $\varphi(M) + JN$ is a coherent f(R) + J-module by Lemma 4.3(2). We prove the converse by the same arguments in (3).

If we set M = R, N = S and $\varphi = f$, then the above theorem recovers a known result for the amalgamation of rings.

Corollary 4.5 ([1, Theorem 2.2 (2)]). Assume that J and $f^{-1}(J)$ are finitely generated ideals of f(R) + J and R, respectively. Then $R \bowtie^f J$ is a coherent ring if and only if R and f(R) + J are coherent rings.

By letting R = S, N = M and $\varphi = Id_M$, Theorem 4.2 recovers the special case of amalgamated duplication of a module along an ideal, as recorded in the next corollary.

Corollary 4.6 ([2, Proposition 2.6]). Let I be a finitely generated ideal of R. Then $M \bowtie I$ is a coherent $R \bowtie I$ -module if and only if M is a coherent R-module.

Theorem 4.2 recovers also a known result for the duplication of a ring along an ideal by taking R = S = M = N and $\varphi = Id_R$.

Corollary 4.7 ([1, Corollary 2.8]). Let I be a finitely generated ideal of R. Then $R \bowtie I$ is a coherent ring if and only if R is a coherent ring.

References

- K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (2015), no. 3, 625–632.
- [2] E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar. 154 (2018), no. 1, 29–42. https://doi.org/10.1007/s10474-017-0775-6
- [3] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155–172, Walter de Gruyter, Berlin, 2009.

10 R. EL KHALFAOUI, N. MAHDOU, P. SAHANDI, AND N. SHIRMOHAMMADI

- [4] _____, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa. 2009.12.008
- [5] _____, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836–1851. https://doi.org/10.1080/00927872.2015.1033628
- [6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459. https://doi.org/10.1142/ S0219498807002326
- [7] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570

RACHIDA EL KHALFAOUI DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY OF FEZ UNIVERSITY S. M. BEN ABDELLAH BOX 2202, FEZ, MOROCCO Email address: elkhalfaoui-rachida@outlook.fr

NAJIB MAHDOU DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY OF FEZ UNIVERSITY S. M. BEN ABDELLAH BOX 2202, FEZ, MOROCCO Email address: mahdou@hotmail.com

PARVIZ SAHANDI DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF TABRIZ TABRIZ, IRAN Email address: sahandi@ipm.ir

NEMATOLLAH SHIRMOHAMMADI DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF TABRIZ TABRIZ, IRAN Email address: shirmohammadi@tabrizu.ac.ir