AMALGAMATED MODULES ALONG AN IDEAL

Rachida El Khalfaoui, Najib Mahdou, Parviz Sahandi, and Nematollah Shirmohammadi

Abstract

Let R and S be two commutative rings, J be an ideal of S and $f: R \rightarrow S$ be a ring homomorphism. The amalgamation of R and S along J with respect to f, denoted by $R \bowtie^{f} J$, is the special subring of $R \times S$ defined by $R \bowtie^{f} J=\{(a, f(a)+j) \mid a \in R, j \in J\}$. In this paper, we study some basic properties of a special kind of $R \bowtie^{f} J$-modules, called the amalgamation of M and N along J with respect to φ, and defined by $M \bowtie^{\varphi} J N:=\{(m, \varphi(m)+n) \mid m \in M$ and $n \in J N\}$, where $\varphi: M \rightarrow N$ is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. Let R and S be two rings, J be an ideal of S and $f: R \longrightarrow S$ be a ring homomorphism. D'Anna, Finocchiaro and Fontana in [3] and [4] introduced and studied the subring

$$
R \bowtie^{f} J=\{(a, f(a)+j) \mid a \in R, j \in J\}
$$

of $R \times S$ called the amalgamation of R and S along J with respect to f. Several classical constructions such as the $R+X S[X], R+X S[[X]]$, the $D+M$ constructions, and the amalgamated duplication of a ring along an ideal can be considered as particular cases of the amalgamated algebra (see [3, Examples 2.5 and 2.6]). Let I be an ideal of R. The amalgamated duplication of R along the ideal I was defined by $R \bowtie I:=\{(a, a+i): a \in R, i \in I\}[6]$.

One of the key tools for studying $R \bowtie^{f} J$ is based on the fact that the amalgamation can be studied in the frame of pullback constructions [3, Section 4]. This point of view allows the authors in [3,4] to provide an ample description of various properties of $R \bowtie^{f} J$, in connection with the properties of R, J and f. Namely, in [3], the authors studied the basic properties of this construction (e.g., characterizations for $R \bowtie^{f} J$ to be a Noetherian ring, an integral domain,
a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation.

Let R be a ring, I an ideal of R, and M an R-module. The authors of [2] recently introduced the duplication of the R-module M along the ideal I denoted by $M \bowtie I$ and gave the following definition

$$
M \bowtie I=\left\{\left(m, m^{\prime}\right) \in M \times M \mid m-m^{\prime} \in I M\right\}
$$

which is an $R \bowtie I$-module with the multiplication given by
$(r, r+i) \cdot\left(m, m^{\prime}\right)=\left(r m,(r+i) m^{\prime}\right), \quad$ where $r \in R, i \in I$, and $\left(m, m^{\prime}\right) \in M \bowtie I$.
If $M=R$, then the duplication of the R-module R along the ideal I coincides with the amalgamated duplication of the ring R along the ideal I. In their article, they studied some basic properties of the duplication of an R-module M along an ideal I. More precisely, they studied when $M \bowtie I$ is a Noetherian, an Artinian or an $\left(\mathrm{Nil}_{*}-\right)$ coherent $R \bowtie I$-module. They also investigated some basic homological properties of $M \bowtie I$: when $M \bowtie I$ is an injective module, a projective module or a flat module.

In this paper we introduce the generalization of the duplication of modules along an ideal. Let $f: R \rightarrow S$ be a ring homomorphism, J be an ideal of S, M be an R-module, N be an S-module (which is an R-module induced naturally by f) and $\varphi: M \rightarrow N$ be an R-module homomorphism. We define the amalgamation of M and N along J with respect to φ by

$$
M \bowtie^{\varphi} J N:=\{(m, \varphi(m)+n) \mid m \in M \text { and } n \in J N\} .
$$

It can be seen that $M \bowtie^{\varphi} J N$ is an $R \bowtie^{f} J$-module by the following scalar product

$$
(r, f(r)+j)(m, \varphi(m)+n):=(r m, \varphi(r m)+f(r) n+j \varphi(m)+j n)
$$

Note that $\varphi(r m)=f(r) \varphi(m)$, since φ is an R-module homomorphism. If $M=R, N=S$ and $\varphi=f$, then the amalgamation of the R-module R and the S-module S along J with respect to φ coincides with the amalgamation of rings R and S along J with respect to f. Also, if $S=R, N=M$ and $\varphi=I d_{M}$, then the amalgamation of M and N along J with respect to φ is exactly the duplication of the R-module M along the ideal J. Hence, the notion of amalgamation of modules is a generalization of all the notions already mentioned.

In this paper, we study some basic properties of the amalgamation of modules. More precisely, we study when $M \bowtie^{\varphi} J N$ is a Noetherian or a coherent $R \bowtie^{f} J$-module. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

Throughout the paper, $f: R \rightarrow S$ is a ring homomorphism, J an ideal of S, M an R-module, N an S-module and $\varphi: M \rightarrow N$ an R-module homomorphism.

2. Definition and basic properties

In this section, we present the basic properties of the amalgamation of M and N along J with respect to $\varphi, M \bowtie^{\varphi} J N$.

One can define $M \bowtie^{\varphi} J N$ by means of pullback of modules. Indeed, let $\pi: N \rightarrow N / J N$ be a natural homomorphism, $M \bowtie^{\varphi} J N \rightarrow N$ (respectively, $\left.M \bowtie^{\varphi} J N \rightarrow M\right)$ be the restriction to $M \bowtie^{\varphi} J N$ of the projection of $M \times N$ onto N (respectively, M). It can be seen that the following diagram is a pullback:

Remark 2.1. (1) $f(R)+J$ is a subring of S. So, N is an $f(R)+J$-module. It is easy to see that $\varphi(M)+J N$ is an $f(R)+J$-submodule of N. Thus $\varphi(M)+J N$ is an $R \bowtie^{f} J$-module via $P_{S}: R \bowtie^{f} J \rightarrow f(R)+J$ where $P_{S}(r, f(r)+j)=f(r)+j$.
(2) $\pi_{N}: M \bowtie^{\varphi} N J \rightarrow \varphi(M)+J N$ given by $\pi_{N}(m, \varphi(m)+n)=\varphi(m)+n$ is an $R \bowtie^{f} J$-module homomorphism.
(3) M is an $R \bowtie^{f} J$-module via the surjective homomorphism $P_{R}: R \bowtie^{f}$ $J \rightarrow R$. It is easy to see that $\pi_{M}: M \bowtie^{\varphi} J N \rightarrow M$ given by $\pi_{M}(m, \varphi(m)+n)=$ m is an $R \bowtie^{f} J$-module homomorphism.
(4) It can be seen that $J N$ is an $f(R)+J$-submodule of $\varphi(M)+J N$. Hence $J N$ is an $R \bowtie^{f} J$-submodule of $\varphi(M)+J N$.
(5) We have the following exact sequence of $R \bowtie^{f} J$-modules and $R \bowtie^{f} J$ homomorphisms:

$$
0 \rightarrow J N \xrightarrow{\iota} M \bowtie^{\varphi} J N \xrightarrow{\pi_{M}} M \rightarrow 0
$$

where $\iota: J N \rightarrow M \bowtie^{\varphi} J N$ given $\iota(n)=(0, n)$.
Proposition 2.2. Let $f: R \rightarrow S$ be a ring homomorphism, J be an ideal of S, M be an R-module, N be an S-module and $\varphi: M \rightarrow N$ an R-module homomorphism. Then the following hold:
(1) $\frac{M \bowtie^{\varphi} J N}{\{0\} \times J N}=M$.
(2) $\frac{M \bowtie^{\varphi} J N}{F \bowtie^{\varphi} J N}=\frac{M}{F}$, where F is a submodule of M.
(3) $\frac{M \bowtie^{\varphi} J N}{\varphi^{-1}(J N) \times\{0\}}=\varphi(M)+J N$.

Proof. Let $\pi_{M}: M \bowtie^{\varphi} J N \rightarrow M ;(m, \varphi(m)+n) \mapsto m, \psi: M \bowtie^{\varphi} J N \rightarrow \frac{M}{F}$; $(m, \varphi(m)+n) \mapsto \bar{m}$ and $\pi_{N}: M \bowtie^{\varphi} J N \rightarrow \varphi(M)+J N ;(m, \varphi(m)+n) \mapsto$ $\varphi(m)+n$. The three homomorphisms are surjective with $\operatorname{ker}\left(\pi_{M}\right)=\{0\} \times J N$, $\operatorname{ker}(\psi)=F \bowtie^{\varphi} J N$ and $\operatorname{ker}\left(\pi_{N}\right)=\varphi^{-1}(J N) \times\{0\}$. Hence, we have the desired isomorphisms.

Remark 2.3. If we consider R-modules in Proposition 2.2 as $R \bowtie^{f} J$-modules, then the isomorphisms are also $R \bowtie^{f} J$-isomorphisms.

We have the following results about localization.
Proposition 2.4. With the notation of Proposition 2.2, the following statements hold:
(1) For $\mathfrak{p} \in \operatorname{Spec}(R)$ and $\mathfrak{q} \in \operatorname{Spec}(S) \backslash \mathrm{V}(J)$, set

$$
\begin{aligned}
\mathfrak{p}^{\prime} & :=\mathfrak{p} \bowtie^{f} J:=\{(p, f(p)+j) \mid p \in \mathfrak{p}, j \in J\} \\
\overline{\mathfrak{q}}^{f} & :=\{(r, f(r)+j) \mid r \in R, j \in J, f(r)+j \in \mathfrak{q}\} .
\end{aligned}
$$

Then, one has the following:
(a) The prime ideals of $R \bowtie^{f} J$ are of the type $\overline{\mathfrak{q}}^{f}$ or $\mathfrak{p}^{\prime f}$, for \mathfrak{q} varying in $\operatorname{Spec}(S) \backslash \mathrm{V}(J)$ and \mathfrak{p} in $\operatorname{Spec}(R)$.
(b) $\operatorname{Max}\left(R \bowtie^{f} J\right)=\left\{\mathfrak{p}^{\prime} f \mid \mathfrak{p} \in \operatorname{Max}(R)\right\} \cup\left\{\overline{\mathfrak{q}}^{f} \mid \mathfrak{q} \in \operatorname{Max}(S) \backslash \mathrm{V}(J)\right\}$.
(2) The following formulas for localizations hold:
(a) For any $\mathfrak{q} \in \operatorname{Spec}(S) \backslash \mathrm{V}(J)$, the localization $\left(M \bowtie^{\varphi} J N\right)_{\bar{q}^{f}}$ is canonically isomorphic to $N_{\mathfrak{q}}$. This isomorphism maps the element $(x, \varphi(x)+y) /(r, f(r)+j)$ to $(\varphi(x)+y) /(f(r)+j)$.
(b) For any $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \mathrm{V}\left(f^{-1}(J)\right)$, the localization $\left(M \bowtie^{\varphi} J N\right)_{\mathfrak{p}^{\prime} f}$ is canonically isomorphic to $M_{\mathfrak{p}}$. This isomorphism maps the element $(x, \varphi(x)+y) /(r, f(r)+j)$ to x / r.
(c) For any $\mathfrak{p} \in \operatorname{Spec}(R)$ containing $f^{-1}(J)$, consider the multiplicative subset $T_{\mathfrak{p}}:=f(R \backslash \mathfrak{p})+J$ of S and set $N_{T_{\mathfrak{p}}}:=T_{\mathfrak{p}}^{-1} N$ and $J_{T_{\mathfrak{p}}}:=T_{\mathfrak{p}}^{-1} J$. If $f_{\mathfrak{p}}: R_{\mathfrak{p}} \rightarrow S_{T_{\mathfrak{p}}}$ is the ring homomorphism induced by f and $\varphi_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow N_{T_{\mathfrak{p}}}$ is the $R_{\mathfrak{p}}$-homomorphism induced by φ, then the $R_{\mathfrak{p}}$-module $\left(M \bowtie^{\varphi} J N\right)_{\mathfrak{p}^{\prime} f}$ is canonically isomorphic to $M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}} N_{T_{\mathfrak{p}}}$. This isomorphism maps the element $(x, f(x)+y) /(r, f(r)+j)$ to $(x / r,(f(x)+y) /(f(r)+j))$.

Proof. (1) is taken from [5, Corollaries 2.5 and 2.7]. For (2), we only prove (c). It is clear that $\psi:\left(M \bowtie^{\varphi} J N\right)_{\mathfrak{p}^{\prime} f} \rightarrow M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}} N_{T_{\mathfrak{p}}}$ which sends $(x, f(x)+y) /(r, f(r)+j)$ to $(x / r,(f(x)+y) /(f(r)+j))$ is a well defined ($R \bowtie^{f}$ $J)_{\mathfrak{p}^{\prime} f}$-module homomorphism. To prove that ψ is one to one, assume that $(x / r,(f(x)+y) /(f(r)+j))=0$. Then $x / r=0$ in $M_{\mathfrak{p}}$ and $(f(x)+y) /(f(r)+j)=$ 0 in $N_{T_{\mathfrak{p}}}$. Hence there exist $r^{\prime \prime} \in R \backslash \mathfrak{p}$ and $f(t)+u \in T_{\mathfrak{p}}$ such that $r^{\prime \prime} x=0$ and $(f(t)+u)(\varphi(x)+y)=0$. So we have $\left(r^{\prime \prime}, f\left(r^{\prime \prime}\right)\right)(t, f(t)+u)(x, \varphi(x)+y)=(0,0)$. This shows that $(x, f(x)+y) /(r, f(r)+j)=0$ and so ψ is one to one. Assume finally that $\left(x / r, \varphi_{\mathfrak{p}}(x / r)+y /\left(f\left(r^{\prime}\right)+j\right)\right) \in M_{\mathfrak{p}} \bowtie^{\varphi_{\mathfrak{p}}} J_{T_{\mathfrak{p}}} N_{T_{\mathfrak{p}}}$. Then

$$
\begin{aligned}
& \left(x / r, \varphi_{\mathfrak{p}}(x / r)+y /\left(f\left(r^{\prime}\right)+j\right)\right) \\
= & \left(x / r, \varphi_{\mathfrak{p}}(x / r)\right)+\left(0, y /\left(f\left(r^{\prime}\right)+j\right)\right) \\
= & \psi\left((x, \varphi(x)) /(r, f(r))+\psi\left((0, y) /\left(r^{\prime}, f\left(r^{\prime}\right)+j\right)\right) .\right.
\end{aligned}
$$

It follows that ψ is surjective.

3. Noetherian property

In [3, Propositions 5.6 and 5.7], the authors determined the Noetherian property of the amalgamated algebra $R \bowtie^{f} J$. We will now see when the amalgamation of two modules along an ideal is Noetherian.

Proposition 3.1. With the notation of Proposition 2.2, the amalgamation $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module if and only if $\varphi(M)+J N$ is a Noetherian $f(R)+J$-module and M is a Noetherian R-modules.

Proof. (\Rightarrow) Using the homomorphism $\pi_{N}, \varphi(M)+J N$ is a Noetherian $R \bowtie^{f} J$ module. Hence $\varphi(M)+J N$ is a Noetherian $f(R)+J$-module. Also M is a Noetherian $R \bowtie^{f} J$-module using π_{M}. Hence M is a Noetherian R-module using P_{R}.
(\Leftarrow) Since $\varphi(M)+J N$ is a Noetherian $f(R)+J$-module, then $\varphi(M)+J N$ is a Noetherian $R \bowtie^{f} J$-module. Hence $J N$ is a Noetherian $R \bowtie^{f} J$-module. Also M is a Noetherian $R \bowtie^{f} J$-module. Therefore $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module (cf. Part 5 of Remark 2.1).
Proposition 3.2. With above notation, assume that at least one of the following conditions holds:
(1) $J N$ is a Noetherian R-module (with the structure naturally induced by $f)$.
(2) $\varphi(M)+J N$ is a Noetherian R-module (with the structure naturally induced by f).
Then $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module if and only if M is a Noetherian R-module. In particular, if M is a Noetherian R-module and N is a Noetherian R-module (with the structure naturally induced by f), then $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module for all ideals J of S.
Proof. Proposition 3.1 implies, without any extra assumption, that M is a Noetherian R-module if $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module. Conversely, assume that M is a Noetherian R-module. One can easily see that (1) follows from (2). So assume that (1) holds. Since M and $J N$ are Noetherian R-modules, they are Noetherian $R \bowtie^{f} J$-modules. Then by Remark 2.1(5), we obtain that $M \bowtie^{\varphi} J N$ is a Noetherian $R \bowtie^{f} J$-module.

4. Coherent property

Let $f: R \rightarrow S$ be a ring homomorphism, J be an ideal of S, M be an R modules, N be an S-module and $\varphi: M \rightarrow N$ be an R-module homomorphism and let n be a positive integer. Consider the function $\varphi^{n}: M^{n} \rightarrow N^{n}$ defined by $\varphi^{n}\left(\left(m_{i}\right)_{i=1}^{i=n}\right)=\left(\varphi\left(m_{i}\right)\right)_{i=1}^{i=n}$. Obviously, φ^{n} is an R-module homomorphism, and $J N^{n}=(J N)^{n}$ is a submodule of N^{n}. This allows us to define $M^{n} \bowtie^{\varphi^{n}}(J N)^{n}$.

We recall that the S-module N is an R-module induced by f, so it is the same for N^{n}. Hence, $r x=f(r) x$ for all $r \in R$ and $x \in N^{n}$ and so

$$
\varphi^{n}(r m)=r \varphi^{n}(m)=f(r) \varphi^{n}(m) \text { for all } r \in R \text { and } x \in N^{n} .
$$

We will use this in the proof of the following proposition.
Proposition 4.1. Let F be a submodule of M^{n}. Then the following hold:
(1) Assume that F is a finitely generated R-module and $J N$ is a finitely generated $(f(R)+J)$-module. Then $F \bowtie^{\varphi^{n}}(J N)^{n}$ is a finitely generated $R \bowtie^{f} J$-module.
(2) Suppose that $\varphi^{n}(F) \subseteq(J N)^{n}$. Then $F \bowtie^{\varphi^{n}}(J N)^{n}$ is a finitely generated $R \bowtie^{f} J$-module if and only if F is a finitely generated R-module and $J N$ is a finitely generated $(f(R)+J)$-module.
Proof. (1) Assume that $F=\sum_{i=1}^{m} R f_{i}$, where $f_{i} \in F$ for all $i \in\{1,2, \ldots, m\}$. Also let $(J N)^{n}=\sum_{i=1}^{m}(f(R)+J) n_{i}$ where $n_{i} \in(J N)^{n}$ since $J N$ is a finitely generated $(f(R)+J)$-module. We claim that $F \bowtie^{\varphi^{n}}(J N)^{n}=\sum_{i=1}^{m}\left(R \bowtie^{f}\right.$ $J)\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right)+\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(0, n_{i}\right)$. Indeed, $\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right)+$ $\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(0, n_{i}\right) \subseteq F \bowtie^{\varphi^{n}}(J N)^{n}$ since $\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right) \in F \bowtie^{\varphi^{n}}(J N)^{n}$ and $\left(0, n_{i}\right) \in F \bowtie^{\varphi^{n}}(J N)^{n}$ for all $i \in\{1,2, \ldots, m\}$. Let $\left(x, \varphi^{n}(x)+k\right) \in$ $F \bowtie^{\varphi^{n}}(J N)^{n}$ where $x \in F$ and $k \in(J N)^{n}$. Then $x=\sum_{i=1}^{m} a_{i} f_{i}$ and $k=$ $\sum_{i=1}^{m}\left(f\left(b_{i}\right)+j_{i}\right) n_{i}$ where $a_{i} \in R$ and $\left(f\left(b_{i}\right)+j_{i}\right) \in(f(R)+J)$ for all $i \in$ $\{1,2, \ldots, m\}$. Hence

$$
\begin{aligned}
\left(x, \varphi^{n}(x)+k\right) & =\left(\sum_{i=1}^{m} a_{i} f_{i}, \varphi^{n}\left(\sum_{i=1}^{m} a_{i} f_{i}\right)+\sum_{i=1}^{m}\left(f\left(b_{i}\right)+j_{i}\right) n_{i}\right) \\
& =\left(\sum_{i=1}^{m} a_{i} f_{i}, \sum_{i=1}^{m} f\left(a_{i}\right) \varphi^{n}\left(f_{i}\right)+\sum_{i=1}^{n}\left(f\left(b_{i}\right)+j_{i}\right) n_{i}\right) \\
& =\sum_{i=1}^{m}\left(a_{i} f_{i}, f\left(a_{i}\right) \varphi^{n}\left(f_{i}\right)\right)+\sum_{i=1}^{m}\left(0,\left(f\left(b_{i}\right)+j_{i}\right) n_{i}\right) \\
& =\sum_{i=1}^{m}\left(a_{i}, f\left(a_{i}\right)\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right)+\sum_{i=1}^{m}\left(b_{i}, f\left(b_{i}\right)+j_{i}\right)\left(0, n_{i}\right) .
\end{aligned}
$$

Therefore, $\left(x, \varphi^{n}(x)+k\right) \in \sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right)+\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(0, n_{i}\right)$ and so $F \bowtie^{\varphi^{n}}(J N)^{n}=\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)\right)+\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(0, n_{i}\right)$ is a finitely generated $R \bowtie^{f} J$-module as desired.
(2) Suppose that $\varphi^{n}(F) \subseteq(J N)^{n}$. If F is a finitely generated R-module and $J N$ is a finitely generated $(f(R)+J)$-module, then $F \bowtie^{\varphi^{n}}(J N)^{n}$ is a finitely generated $R \bowtie^{f} J$-module by (1). Conversely, assume that $F \bowtie^{\varphi^{n}}(J N)^{n}$ is a finitely generated $R \bowtie^{f} J$-module. Then, there exist $f_{i} \in F$ and $n_{i} \in(J N)^{n}$ for $i \in\{1,2, \ldots, n\}$ such that $F \bowtie^{\varphi^{n}}(J N)^{n}=\sum_{i=1}^{m}\left(R \bowtie^{f} J\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)+n_{i}\right)$. So $F=\sum_{i=1}^{m} R f_{i}$. On the other hand, we claim that $(J N)^{n}=\sum_{i=1}^{m}(f(R)+$ $J)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right)$. Indeed, let $k \in(J N)^{n}$. Then $(0, k)=\sum_{i=1}^{m}\left(a_{i}, f\left(a_{i}\right)+\right.$ $\left.j_{i}\right)\left(f_{i}, \varphi^{n}\left(f_{i}\right)+n_{i}\right)$ for some $a_{i} \in R$ and $j_{i} \in J$. Hence $k=\sum_{i=1}^{m}\left(f\left(a_{i}\right)+\right.$ $\left.j_{i}\right)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right) \in \sum_{i=1}^{m}(f(R)+J)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right)$. So $(J N)^{n} \subseteq \sum_{i=1}^{m}(f(R)+$ $J)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right)$. Since $\varphi^{n}(F) \subseteq(J N)^{n}$, then $\varphi^{n}\left(f_{i}\right) \in(J N)^{n}$ for all $i \in$ $\{1,2, \ldots, m\}$ and so $\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right) \in(J N)^{n}$ for all $i \in\{1,2, \ldots, m\}$. Hence
$\sum_{i=1}^{m}(f(R)+J)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right) \subseteq(J N)^{n}$. Therefore, $(J N)^{n}=\sum_{i=1}^{m}(f(R)+$ $J)\left(\varphi^{n}\left(f_{i}\right)+n_{i}\right)$ is a finitely generated $f(R)+J$-module and so $J N$ is a finitely generated $f(R)+J$-module.

Recall that an R-module M is called a coherent R-module if it is finitely generated and every finitely generated submodule of M is finitely presented.
Theorem 4.2. (1) Assume that $J N$ is a finitely generated $f(R)+J$-module. If $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module, then M is a coherent R-module.
(2) Assume that J is a finitely generated ideal of $f(R)+J$ and φ is surjective. If $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module, then M is a coherent R-module.
(3) Assume that J and $J N$ are finitely generated $f(R)+J$-modules and $\varphi^{-1}(J N)$ is a finitely generated R-module. Then $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module if and only if M is a coherent R-module and $\varphi(M)+J N$ is a coherent $f(R)+J$-module.
(4) Assume that J is a finitely generated $f(R)+J$-module, φ is surjective and $\varphi^{-1}(J N)$ is a finitely generated R-module. Then $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module if and only if M is a coherent R-module and $\varphi(M)+J N$ is a coherent $f(R)+J$-module.

To prove Theorem 4.2, we need to establish the following lemmas. Before this, we recall the following well-known fact. Let $g: A \rightarrow B$ be a surjective ring morphism with kernel K. If T is an A-module annihilated by K, then T is canonically a B-module and $A X=B X$ for each subset X of T (let us say that the A-module structure on T is essentially the same as the B-module structure on T).
Lemma 4.3. (1) $\{0\} \times J N$ is a finitely generated $R \bowtie^{f} J$-module if and only if $J N$ is a finitely generated $f(R)+J$-module.
(2) $\varphi^{-1}(J N) \times\{0\}$ is a finitely generated $R \bowtie^{f} J$-module if and only if $\varphi^{-1}(J N)$ is a finitely generated R-module.
(3) If $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module and $\varphi^{-1}(J N)$ is a finitely generated R-module, then $\varphi(M)+J N$ is a coherent $f(R)+J$-module.
Proof. (1) Consider the second component projection from $R \bowtie^{f} J$ to $f(R)+J$. Then, for each subset X of the $R \bowtie^{f} J$-module $\{0\} \times J N$, one has $\left(R \bowtie^{f} J\right) X=$ $(f(R)+J) X$.
(2) Consider the first component projection from $R \bowtie^{f} J$ to R. Then, for each subset X of the $R \bowtie^{f} J$-module $\varphi^{-1}(J N) \times\{0\}$, one has $\left(R \bowtie^{f} J\right) X=$ $R X$.
(3) Suppose that $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module and $\varphi^{-1}(J N)$ is a finitely generated R-module. Then $\varphi^{-1}(J N) \times\{0\}$ is a finitely generated $R \bowtie^{f} J$-module by (1). By Proposition 2.2, $\frac{M \bowtie^{\varphi} J N}{\varphi^{-1}(J N) \times\{0\}}=\varphi(M)+J N$ and so $\varphi(M)+J N$ is a coherent $R \bowtie^{f} J$-module by [7, Theorem 2.2.1], and since $f(R)+J$ is a finitely generated $R \bowtie^{f} J$-module $(f(R)+J \cong\{0\} \times(f(R)+J)=$ $\left.\left(R \bowtie^{f} J\right)(0,1)\right)$, then $\varphi(M)+J N$ is a coherent $(f(R)+J)$-module by [7, Theorem 2.2.7].

Lemma 4.4. Assume that J and $\varphi^{-1}(J N)$ are a finitely generated $(f(R)+J)$ module and an R-module, respectively. If M is a coherent R-module, then $\varphi^{-1}(J N) \times\{0\}$ is a coherent $R \bowtie^{f} J$-module.
Proof. Since $\varphi^{-1}(J N)$ is a finitely generated R-module, then $\varphi^{-1}(J N) \times\{0\}$ is a finitely generated $R \bowtie^{f} J$-module. It remains to show that every finitely generated submodule of $\varphi^{-1}(J N) \times\{0\}$ is finitely presented. Assume that M is a coherent R-module and let K be a finitely generated submodule of $\varphi^{-1}(J N) \times\{0\}$. Then $K=F \times\{0\}$ where $F=\sum_{i=1}^{n} R f_{i}$ for some positive integer n and $f_{i} \in F$. Consider the exact sequence of R-modules

$$
0 \rightarrow \operatorname{ker} v \rightarrow R^{n} \rightarrow F \rightarrow 0
$$

where $v\left(\left(a_{i}\right)_{i=1}^{i=n}\right)=\sum_{i=1}^{n} a_{i} f_{i}$. We have $K=\sum_{i=1}^{n}\left(R \bowtie^{f} J\right)\left(f_{i}, 0\right)$. Consider the exact sequence of $R \bowtie^{f} J$-module

$$
0 \rightarrow \operatorname{ker} u \rightarrow\left(R \bowtie^{f} J\right)^{n} \rightarrow K \rightarrow 0
$$

where $u\left(\left(a_{i}, f\left(a_{i}\right)+j_{i}\right)_{i=1}^{i=n}\right)=\sum_{i=1}^{n}\left(a_{i}, f\left(a_{i}\right)+j_{i}\right)\left(f_{i}, 0\right)$. Then

$$
\begin{aligned}
\operatorname{ker} u & =\left\{\left(a_{i}, f\left(a_{i}\right)+j_{i}\right)_{i=1}^{i=n} \in\left(R \bowtie^{f} J\right)^{n} \mid \sum_{i=1}^{n} a_{i} f_{i}=0\right\} \\
& =\left\{\left(\left(a_{i}\right)_{i=1}^{i=n}, f^{n}\left(\left(a_{i}\right)_{i=1}^{i=n}\right)+\left(j_{i}\right)_{i=1}^{i=n}\right) \in R^{n} \bowtie^{f^{n}} J^{n} \mid\left(a_{i}\right)_{i=1}^{i=n} \in \operatorname{ker} v\right\} \\
& =\operatorname{ker} v \bowtie^{f^{n}} J^{n} .
\end{aligned}
$$

The second equality follows from the isomorphism $\left(R \bowtie^{f} J\right)^{n} \cong R^{n} \bowtie^{f^{n}} J^{n}$ [1, Page 3].

Since F is a submodule of M and M is coherent, then F is a finitely presented R-module and so ker v is finitely generated by the first sequence. Hence ker $u=$ $\operatorname{ker} v \bowtie^{f^{n}} J^{n}$ is a finitely generated $R \bowtie^{f} J$-module by [1, Lemma 2.4(1)]. Therefore, K is a finitely presented $R \bowtie^{f} J$-module by the second sequence and hence $\varphi^{-1}(J N) \times\{0\}$ is a coherent $R \bowtie^{f} J$-module.
Proof of Theorem 4.2. (1) Assume that $J N$ is a finitely generated $f(R)+J$ module. Suppose that $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module. We have $\frac{R \bowtie^{f} J}{0 \times J}=R$ by [4, Proposition 2.1]. Hence, using [7, Theorem 2.4.1], to prove that M is a coherent R-module it suffices to prove that it is coherent as an $R \bowtie^{f} J$-module. Since $J N$ is a finitely generated $f(R)+J$-module, then $0 \times J N$ is a finitely generated $R \bowtie^{f} J$-module. Hence, using Proposition 2.2 and [7 , Theorem 2.2.1] our result follows immediately.
(2) Assume that J is a finitely generated ideal of $f(R)+J$. Suppose that $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module. As in (1), using [7, Theorem 2.4.1], to prove that M is a coherent R-module it suffices to prove that it is coherent as an $R \bowtie^{f} J$-module. We first show that $(\{0\} \times J)\left(M \bowtie^{\varphi} J N\right)=0 \times$ $J N$. Indeed, it is clear that $(\{0\} \times J)\left(M \bowtie^{\varphi} J N\right) \subseteq\{0\} \times J N$. Now, let $(0, n) \in\{0\} \times J N$. Then $n=\sum_{i=1}^{n} j_{i} n_{i}$ where $j_{i} \in J$ and $n_{i} \in N$. Since φ is surjective, then for each n_{i} there exists m_{i} such that $\varphi\left(m_{i}\right)=n_{i}$. Hence $(0, n)=$
$\sum_{i=1}^{n}\left(0, j_{i}\right)\left(m_{i}, \varphi\left(m_{i}\right)\right) \in(\{0\} \times J)\left(M \bowtie^{\varphi} J N\right)$; so that $(\{0\} \times J)\left(M \bowtie^{\varphi} J N\right)=$ $0 \times J N$. Thus, $0 \times J N$ is a finitely generated $R \bowtie^{f} J$-module since $(\{0\} \times J)$ and $M \bowtie^{\varphi} J N$ are finitely generated $R \bowtie^{f} J$-modules. It follows from Proposition 2.2 and [7, Theorem 2.2.1] that M is a coherent $R \bowtie^{f} J$-module.
(3) Assume that J and $J N$ are finitely generated $f(R)+J$-modules and $\varphi^{-1}(J N)$ a finitely generated R-module. Suppose that $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module. Then M is a coherent R-module by (1) and $\varphi(M)+J N$ is a coherent $f(R)+J$-module by Lemma 4.3(2). Conversely, suppose that M is a coherent R-module and $\varphi(M)+J N$ is a coherent $f(R)+J$-module. Then $\varphi^{-1}(J N) \times\{0\}$ is a coherent $R \bowtie^{f} J$-module by Lemma 4.4. By Proposition $2.2, \frac{M \bowtie^{\varphi} J N}{\varphi^{-1}(J N) \times\{0\}}=\varphi(M)+J N$. Hence, $M \bowtie^{\varphi} J N$ is coherent by [7, Theorem 2.2.1].
(4) Assume that J is a finitely generated $f(R)+J$-module, φ is surjective and $\varphi^{-1}(J N)$ a finitely generated R-module. Suppose that $M \bowtie^{\varphi} J N$ is a coherent $R \bowtie^{f} J$-module. Then, M is a coherent R-module by (2) and $\varphi(M)+J N$ is a coherent $f(R)+J$-module by Lemma $4.3(2)$. We prove the converse by the same arguments in (3).

If we set $M=R, N=S$ and $\varphi=f$, then the above theorem recovers a known result for the amalgamation of rings.

Corollary 4.5 ([1, Theorem $2.2(2)])$. Assume that J and $f^{-1}(J)$ are finitely generated ideals of $f(R)+J$ and R, respectively. Then $R \bowtie^{f} J$ is a coherent ring if and only if R and $f(R)+J$ are coherent rings.

By letting $R=S, N=M$ and $\varphi=I d_{M}$, Theorem 4.2 recovers the special case of amalgamated duplication of a module along an ideal, as recorded in the next corollary.

Corollary 4.6 ([2, Proposition 2.6]). Let I be a finitely generated ideal of R. Then $M \bowtie I$ is a coherent $R \bowtie I$-module if and only if M is a coherent R-module.

Theorem 4.2 recovers also a known result for the duplication of a ring along an ideal by taking $R=S=M=N$ and $\varphi=I d_{R}$.

Corollary 4.7 ([1, Corollary 2.8]). Let I be a finitely generated ideal of R. Then $R \bowtie I$ is a coherent ring if and only if R is a coherent ring.

References

[1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (2015), no. 3, 625-632.
[2] E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar. 154 (2018), no. 1, 29-42. https://doi.org/10.1007/s10474-017-0775-6
[3] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
[4] , Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa. 2009.12.008
[5] _ New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
[6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/ S0219498807002326
[7] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570

Rachida El Khalfaoui
Department of Mathematics
Faculty of Science and Technology of Fez
University S. M. Ben Abdellah
Box 2202, Fez, Morocco
Email address: elkhalfaoui-rachida@outlook.fr
Najib Mahdou
Department of Mathematics
Faculty of Science and Technology of Fez
University S. M. Ben Abdellah
Box 2202, Fez, Morocco
Email address: mahdou@hotmail.com
Parviz Sahandi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
Tabriz, Iran
Email address: sahandi@ipm.ir
Nematollah Shirmohammadi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
Tabriz, Iran
Email address: shirmohammadi@tabrizu.ac.ir

