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AMALGAMATED MODULES ALONG AN IDEAL

RacHIDA EL KHALFAOUI, NAJIB MAHDOU, PARVIZ SAHANDI,
AND NEMATOLLAH SHIRMOHAMMADI

ABSTRACT. Let R and S be two commutative rings, J be an ideal of S
and f: R — S be a ring homomorphism. The amalgamation of R and S
along J with respect to f, denoted by R xf J, is the special subring of
R x S defined by R/ J = {(a, f(a) + j)|a € R,j € J}. In this paper,
we study some basic properties of a special kind of R f J-modules,
called the amalgamation of M and N along J with respect to ¢, and
defined by M <% JN := {(m,p(m) +n) | m € M and n € JN}, where
¢ : M — N is an R-module homomorphism. The new results generalize
some known results on the amalgamation of rings and the duplication of
a module along an ideal.

1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unital. Let R and S be two rings, J be an ideal of S and f: R — §
be a ring homomorphism. D’Anna, Finocchiaro and Fontana in [3] and [4]
introduced and studied the subring

R/ J={(a,f(a)+7)|a€R,jecJ}

of R x S called the amalgamation of R and S along J with respect to f.
Several classical constructions such as the R+ X S[X], R+ X S[[X]], the D+ M
constructions, and the amalgamated duplication of a ring along an ideal can
be considered as particular cases of the amalgamated algebra (see [3, Examples
2.5 and 2.6]). Let I be an ideal of R. The amalgamated duplication of R along
the ideal I was defined by R [ := {(a,a+1):a € R, i € I} [6].

One of the key tools for studying R >/ J is based on the fact that the
amalgamation can be studied in the frame of pullback constructions [3, Section
4]. This point of view allows the authors in [3,4] to provide an ample description
of various properties of R >/ J, in connection with the properties of R, J and
f. Namely, in [3], the authors studied the basic properties of this construction
(e.g., characterizations for R >/ J to be a Noetherian ring, an integral domain,
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a reduced ring) and they characterized those distinguished pullbacks that can
be expressed as an amalgamation.

Let R be a ring, I an ideal of R, and M an R-module. The authors of
[2] recently introduced the duplication of the R-module M along the ideal I
denoted by M <1 I and gave the following definition

Mx<TI={mm)eMxM|m-m'elIM}
which is an R < I-module with the multiplication given by
(r,r+i)-(m,m’") = (rm, (r+i)m’), wherer € R, i € I, and (m,m’) € M > I.

If M = R, then the duplication of the R-module R along the ideal I coincides
with the amalgamated duplication of the ring R along the ideal I. In their
article, they studied some basic properties of the duplication of an R-module
M along an ideal I. More precisely, they studied when M > I is a Noetherian,
an Artinian or an (Nil,-)coherent R <t I-module. They also investigated some
basic homological properties of M < I: when M [ is an injective module, a
projective module or a flat module.

In this paper we introduce the generalization of the duplication of modules
along an ideal. Let f : R — S be a ring homomorphism, J be an ideal of
S, M be an R-module, N be an S-module (which is an R-module induced
naturally by f) and ¢ : M — N be an R-module homomorphism. We define
the amalgamation of M and N along J with respect to ¢ by

M <? JN :={(m,p(m)+n)|me M and n € JN}.

It can be seen that M <¥ JN is an R >/ J-module by the following scalar
product

(r f(r) + 3)(m, p(m) +n) := (rm, @(rm) + f(r)n + jeo(m) + jn).

Note that ¢(rm) = f(r)p(m), since ¢ is an R-module homomorphism. If
M = R, N =8 and ¢ = f, then the amalgamation of the R-module R and
the S-module S along J with respect to ¢ coincides with the amalgamation
of rings R and S along J with respect to f. Also, if S = R, N = M and
@ = Idyps, then the amalgamation of M and N along J with respect to ¢
is exactly the duplication of the R-module M along the ideal J. Hence, the
notion of amalgamation of modules is a generalization of all the notions already
mentioned.

In this paper, we study some basic properties of the amalgamation of mod-
ules. More precisely, we study when M ¥ JN is a Noetherian or a coherent
R al J-module. The new results generalize some known results on the amal-
gamation of rings and the duplication of a module along an ideal.

Throughout the paper, f : R — S is a ring homomorphism, J an ideal of .S,
M an R-module, N an S-module and ¢ : M — N an R-module homomorphism.
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2. Definition and basic properties

In this section, we present the basic properties of the amalgamation of M
and N along J with respect to ¢, M =¥ JN.

One can define M ¥ JN by means of pullback of modules. Indeed, let
m: N = N/JN be a natural homomorphism, M ¥ JN — N (respectively,
M ¥ JN — M) be the restriction to M ¥ JN of the projection of M x N
onto N (respectively, M). It can be seen that the following diagram is a
pullback:

M <¥ JN — N

|k

M N/JN.

TOP

Remark 2.1. (1) f(R)+J is a subring of S. So, N is an f(R)+ J-module. It is
easy to see that ¢(M)+JN is an f(R)+.J-submodule of N. Thus p(M)+JN is
an R o</ J-module via Ps : R/ J — f(R)+J where Ps(r, f(r)+j) = f(r)+j.

(2) mny : M ¥ NJ — (M) + JN given by my(m,o(m) +n) = p(m) +n
is an R </ J-module homomorphism.

(3) M is an R </ J-module via the surjective homomorphism Pg : R </
J — R. Tt is easy to see that mps : M ¥ JN — M given by mas(m, (m)+n) =
m is an R </ J-module homomorphism.

(4) Tt can be seen that JN is an f(R)+ J-submodule of ¢(M)+ JN. Hence
JN is an Rp</ J-submodule of ¢(M) + JN.

(5) We have the following exact sequence of R </ J-modules and R >/ J-
homomorphisms:

0—JN S M¥ JN™ M — 0,
where ¢ : JN — M ¥ JN given (n) = (0,n).
Proposition 2.2. Let f : R — S be a ring homomorphism, J be an ideal

of S, M be an R-module, N be an S-module and ¢ : M — N an R-module
homomorphism. Then the following hold:

(1) Mx<? JN - M.

{0} xJN
(2) %E:JJJZVV = 2L where F is a submodule of M.

(3) 5Ny = #(M) + JN.
Proof. Let mpy : M ><t® JN — M; (m,p(m) +n) —m, ¢ : M =<? JN — %;
(m,p(m)+n) — mand 7y : M =¥ JN — (M) + JN; (m,p(m) + n) —
©(m)+n. The three homomorphisms are surjective with ker(mps) = {0} x JN,
ker(y)) = F ¥ JN and ker(my) = ¢~ !(JN)x{0}. Hence, we have the desired
isomorphisms. O

Remark 2.3. If we consider R-modules in Proposition 2.2 as R >/ J-modules,
then the isomorphisms are also R >/ J-isomorphisms.
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We have the following results about localization.

Proposition 2.4. With the notation of Proposition 2.2, the following state-
ments hold:

(1) Forp € Spec(R) and q € Spec(S) \ V(J), set
p=poad Jo={(p, f(0) +J)IpEP.jET},
il = f)+ i) Ir €RG e f(r)+]€a}.

Then, one has the following:

(a) The prime ideals of R<? J are of the type ﬁf orp't, for q varying
in Spec(S) \ V(J) and p in Spec(R).

(b) Max(R <! J) = {7 | p € Max(R)} U {@ |4 € Max($) \ V(.))}.

(2) The following formulas for localizations hold:

(a) For any q € Spec(S) \ V(J), the localization (M ><* JN)zs is
canonically isomorphic to Nq. This isomorphism maps the ele-
ment (z,o(x) +y)/(r, f(r) + ) to (p(x) +y)/(f(r) + 7).

(b) For any p € Spec(R)\ V(f~"(J)), the localization (M <® JN),
is canonically isomorphic to My. This isomorphism maps the el-
ement (z, p(z) +y)/(r, f(r) + J) to x/7.

(c) For any p € Spec(R) containing f~1(J), consider the multiplica-
tive subset Ty := f(R\ p) +J of S and set Ny, := T, 'N and
Jr, == T{lJ, If fo : Ry — S, is the ring homomorphism in-
duced by f and @y : My — Nr, is the Ry-homomorphism induced
by @, then the Ry-module (M >* JN),; is canonically isomor-
phic to My >?* Jp, Np,. This isomorphism maps the element

(@, f(@) +y)/(r, f(r) + ) to (x/r,(f(x) +y)/(f(r) + 7))
Proof. (1) is taken from [5, Corollaries 2.5 and 2.7]. For (2), we only prove
(c). It is clear that ¢ : (M ¥ JN),; — M, >¥* Jp, Ny, which sends

(z, f(x)+y)/(r, f(r)+]) to (a/r, (f(x) +y)/(f(r) +])) is a well defined (R >/
J)p/f—module homomorphism. To prove that 1 is one to one, assume that

(z/r, (f()+y)/(f(r)+])) = 0. Then z/r = 0in My and (f(x)+y)/(f(r)+7) =
0 in N7,. Hence there exist 7 € R\p and f(t)+u € T}, such that 7"z = 0 and

(f@)+u)(p(z)+y) = 0. So we have (", f(r") (¢, f(t)+u)(z, o(x)+y) = (0,0).
This shows that (z, f(z)+y)/(r, f(r) +j) = 0 and so ¢ is one to one. Assume
finally that (z/r,¢p(z/r) +y/(f(r') +j)) € My >#» Jr, Ny,. Then

(@/r,op(a/r) +y/(f(r') + )
= (/r,p(x/r)) + (0,5/(f (') + )
= ¥((x,0(@))/(r, f(r)) +(0,5)/ (", f(r') + 5)).

It follows that v is surjective. ([
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3. Noetherian property

In [3, Propositions 5.6 and 5.7], the authors determined the Noetherian
property of the amalgamated algebra R </ J. We will now see when the
amalgamation of two modules along an ideal is Noetherian.

Proposition 3.1. With the notation of Proposition 2.2, the amalgamation
M <% JN is a Noetherian R < J-module if and only if o(M) + JN is a
Noetherian f(R) 4+ J-module and M is a Noetherian R-modules.

Proof. (=) Using the homomorphism 7y, ¢(M)+JN is a Noetherian R </ J-
module. Hence p(M) + JN is a Noetherian f(R) + J-module. Also M is a
Noetherian R </ J-module using ;. Hence M is a Noetherian R-module
using Pg.

(<) Since (M) + JN is a Noetherian f(R) + J-module, then (M) + JN
is a Noetherian R </ J-module. Hence JN is a Noetherian R </ J-module.
Also M is a Noetherian R ></ J-module. Therefore M ¥ JN is a Noetherian
R/ J-module (cf. Part 5 of Remark 2.1). O

Proposition 3.2. With above notation, assume that at least one of the follow-
ing conditions holds:

(1) JN is a Noetherian R-module (with the structure naturally induced by
.

(2) (M) + JN is a Noetherian R-module (with the structure naturally
induced by f).

Then M % JN is a Noetherian R </ J-module if and only if M is a Noether-
ian R-module. In particular, if M is a Noetherian R-module and N is a Noe-
therian R-module (with the structure naturally induced by f), then M <¥ JN
is a Noetherian R <! J-module for all ideals J of S.

Proof. Proposition 3.1 implies, without any extra assumption, that M is a
Noetherian R-module if M > JN is a Noetherian R >/ J-module. Con-
versely, assume that M is a Noetherian R-module. One can easily see that (1)
follows from (2). So assume that (1) holds. Since M and JN are Noetherian
R-modules, they are Noetherian R >/ J-modules. Then by Remark 2.1(5), we
obtain that M ¥ JN is a Noetherian R </ J-module. (I

4. Coherent property

Let f: R — S be a ring homomorphism, J be an ideal of S, M be an R-
modules, N be an S-module and ¢ : M — N be an R-module homomorphism
and let n be a positive integer. Consider the function @™ : M™ — N™ defined by
0" ((m;)i=1) = (o(m;))i=t. Obviously, ¢ is an R-module homomorphism, and
JN™ = (JN)" is a submodule of N™. This allows us to define M" <#" (JN)™.

We recall that the S-module N is an R-module induced by f, so it is the
same for N™. Hence, ra = f(r)x for all r € R and € N™ and so

©"(rm) = re™(m) = f(r)e™(m) for all r € R and x € N™.
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We will use this in the proof of the following proposition.

Proposition 4.1. Let F be a submodule of M™. Then the following hold:

(1) Assume that F is a finitely generated R-module and JN is a finitely
generated (f(R) + J)-module. Then F >¢" (JN)" is a finitely gener-
ated R >/ J-module.

(2) Suppose that " (F) C (JN)". Then F<¢" (JN)™ is a finitely gener-
ated R <! J-module if and only if F is a finitely generated R-module
and JN is a finitely generated (f(R) + J)-module.

Proof. (1) Assume that F' =" | Rf;, where f; € F for all i € {1,2,...,m}.
Also let (JN)" = 3" (f(R) + J)n; where n; € (JN)" since JN is a finitely
generated (f(R) + J)-module. We claim that F 0<¢" (JN)" = 37" (R >/

D" (F)) + Sy (R wd J)(0,1:). Tndeed, S (R o< ) (fon (1) +
S (R >t J)(0, ni) € F b (JN)™ since (fi,"(fi)) € F =#" (JN)"
and (0,n;) € F <x#" (JN)* for all i € {1,2,...,m}. Let (z,¢"(x) + k) €
F <" (JN)" where z € F and k € (JN)". Then z = 31" a;f; and k =
Yo (f(bi) + ji)n; where a; € R and (f(b;) + ji) € (f(R) + J) for all i €
{1,2,...,m}. Hence

(z, 0" () + k) = (Z ai fi, @n(z aifi) + Z(f(bz) + Ji)ni)

=1

:(Zaifivzf(az fz +Z +]z nz
Z a;fi, f
:Z (ai, f(ai))(fis e

i=1
Therefore, (x T, e(z) + k) € S (Rl I)(fi o™
and so F oa#" (JN)" = Y7 (Ro! J)(fs, 67 (f)
finitely generated R </ J-module as desired.

(2) Suppose that ¢"™(F) C (JN)™. If F is a finitely generated R-module and
JN is a finitely generated (f(R) + J)-module, then F <*" (JN)" is a finitely
generated R </ J-module by (1). Conversely, assume that F >¢" (JN)" is a
finitely generated R </ J-module. Then, there exist f; € F and n; € (JN)"
fori € {1,2,...,n} such that F'x®" (JN)"* =Y (Ro<! J)(fi, ™ (fi) +ni).
So F =", Rf;. On the other hand, we claim that (JN)™ = YI" (f(R) +
J)("™(fi) + ni). Indeed, let k € (JN)™. Then (0,k) = > 1", (a;, fla;) +
Ji)(fi, ™ (fi) + n;) for some a; € R and j; € J. Hence k = >, (f(a;) +
))(( P+ m) € S (F(R) + I (@) +mi). So (JNY' € S (F(R) +

" (fi) + Z( (f(b:) + ji)ni)
"(fi) + Z(b“ f(0i) +5:)(0,m5).
i—1

fi)) + 2 (R o< J)(0,m5)
+ 3" (R J)(0,n;) is a

\_/A@

"(fi) + ni). Since ¢"(F) C (JN)™, then ¢"(f;) € (JN)" for all i €

{1,2,...,m} and so (¢"(f;) +n;) € (JN)" for all i € {1,2,...,m}. Hence
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21 (f(R) + I)(¢"(fi) + mi) © (JN)". Therefore, (JN)" = 371 (f(R) +
J)(@™(fi) +mn;) is a finitely generated f(R)+ J-module and so JN is a finitely
generated f(R) + J-module. O

Recall that an R-module M is called a coherent R-module if it is finitely
generated and every finitely generated submodule of M is finitely presented.

Theorem 4.2. (1) Assume that JN is a finitely generated f(R) + J-module.
If M % JN ‘s a coherent R <! J-module, then M is a coherent R-module.

(2) Assume that J is a finitely generated ideal of f(R)+J and ¢ is surjective.
If M <® JN ‘is a coherent R <! J-module, then M is a coherent R-module.

(3) Assume that J and JN are finitely generated f(R) + J-modules and
0 Y(JN) is a finitely generated R-module. Then M ¥ JN is a coherent
R >/ J-module if and only if M is a coherent R-module and o(M) + JN is a
coherent f(R) + J-module.

(4) Assume that J is a finitely generated f(R) 4+ J-module, ¢ is surjective
and ¢~ Y(JN) is a finitely generated R-module. Then M >? JN is a coherent
R <! J-module if and only if M is a coherent R-module and o(M) + JN is a
coherent f(R) + J-module.

To prove Theorem 4.2, we need to establish the following lemmas. Before
this, we recall the following well-known fact. Let g : A — B be a surjective
ring morphism with kernel K. If T' is an A-module annihilated by K, then T is
canonically a B-module and AX = BX for each subset X of T' (let us say that
the A-module structure on T is essentially the same as the B-module structure
onT).

Lemma 4.3. (1) {0} x JN is a finitely generated R </ J-module if and only
if JN is a finitely generated f(R) + J-module.

(2) ¢ YH(JN) x {0} is a finitely generated R >/ J-module if and only if
0 Y(JN) is a finitely generated R-module.

(3) If M >® JN is a coherent R <! J-module and ¢~*(JN) is a finitely
generated R-module, then ¢(M) + JN is a coherent f(R) 4+ J-module.

Proof. (1) Consider the second component projection from R >/ J to f(R)+.J.
Then, for each subset X of the R </ J-module {0} x JN, one has (R >/ J)X =
(J(R) + J)X.

(2) Consider the first component projection from R >/ J to R. Then, for
each subset X of the R >/ J-module ¢~ (JN) x {0}, one has (R </ J)X =
RX.

(3) Suppose that M ¥ JN is a coherent R >/ J-module and ¢~ !(JN)
is a finitely generated R-module. Then ¢~(JN) x {0} is a finitely generated
R ><f J-module by (1). By Proposition 2.2, #}i)ﬁv{o} = @(M)+ JN and
so ¢(M) + JN is a coherent R >/ J-module by [7, Theorem 2.2.1], and since
f(R)+J is a finitely generated R </ J-module (f(R)+J = {0} x (f(R)+J) =
(R </ J)(0,1)), then (M) + JN is a coherent (f(R) + J)-module by [7,
Theorem 2.2.7]. O
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Lemma 4.4. Assume that J and ¢~ (JN) are a finitely generated (f(R)+J)-
module and an R-module, respectively. If M is a coherent R-module, then
@ Y(JN) x {0} is a coherent R </ J-module.

Proof. Since ¢~!(JN) is a finitely generated R-module, then ¢~ 1(JN) x {0}
is a finitely generated R >/ J-module. It remains to show that every finitely
generated submodule of ¢~}(JN) x {0} is finitely presented. Assume that
M is a coherent R-module and let K be a finitely generated submodule of
@ '(JN) x {0}. Then K = F x {0} where F = " | Rf; for some positive
integer n and f; € F. Consider the exact sequence of R-modules

0— kerv - R" — F — 0,

where v((a;)i=}) = Y.r aifi. We have K = Y"1 (R J)(fi,0). Consider
the exact sequence of R </ J-module

0— keru — (R</ J)" = K — 0,
where u((as, f(ai) + 7:)iZ1) = Yiy (as, f(ai) + 5i)(fi, 0). Then

keru = {(a;, f(a;) + ji)i=p € (Ro<! )™ | > aifi = 0}
=1
= {((a)i=, M ((@)iZ0) + (a)iZh) € R o™ J™ | (@)=} € kerv}
= kervna!" J".

The second equality follows from the isomorphism (R >/ J)” = R </ tn
[1, Page 3].

Since F'is a submodule of M and M is coherent, then F'is a finitely presented
R-module and so ker v is finitely generated by the first sequence. Hence ker u =
kerv >/ J" is a finitely generated R >/ J-module by [1, Lemma 2.4(1)].
Therefore, K is a finitely presented R </ J-module by the second sequence
and hence ¢~ 1(JN) x {0} is a coherent R </ J-module. O

Proof of Theorem 4.2. (1) Assume that JN is a finitely generated f(R) + J-
module. Suppose that M ¥ JN is a coherent R >/ J-module. We have
%‘j};‘] = R by [4, Proposition 2.1]. Hence, using [7, Theorem 2.4.1], to prove
that M is a coherent R-module it suffices to prove that it is coherent as an
R </ J-module. Since JN is a finitely generated f(R) + J-module, then
0 x JN is a finitely generated R >/ J-module. Hence, using Proposition 2.2
and [7, Theorem 2.2.1] our result follows immediately.

(2) Assume that J is a finitely generated ideal of f(R) + J. Suppose that
M >a# JN is a coherent R </ J-module. As in (1), using [7, Theorem 2.4.1],
to prove that M is a coherent R-module it suffices to prove that it is coherent
as an R </ J-module. We first show that ({0} x J)(M > JN) = 0 x
JN. Indeed, it is clear that ({0} x J)(M =¥ JN) C {0} x JN. Now, let
(0,n) € {0} x JN. Then n = >, jin; where j; € J and n; € N. Since ¢ is
surjective, then for each n; there exists m; such that ¢(m;) = n;. Hence (0,n) =
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> (0, 5:) (mis o(m;)) € ({0} xJ)(M ¥ JN); so that ({0} xJ)(M ># JN) =
0xJN. Thus, 0x JN is a finitely generated R </ J-module since ({0} x J) and
M >a# JN are finitely generated R </ J-modules. It follows from Proposition
2.2 and [7, Theorem 2.2.1] that M is a coherent R </ J-module.

(3) Assume that J and JN are finitely generated f(R) + J-modules and
¢ Y(JN) a finitely generated R-module. Suppose that M ¥ JN is a coherent
R </ J-module. Then M is a coherent R-module by (1) and (M) + JN is
a coherent f(R) + J-module by Lemma 4.3(2). Conversely, suppose that M is
a coherent R-module and ¢(M) + JN is a coherent f(R) + J-module. Then
¢ 1 (JN) x {0} is a coherent R >/ J-module by Lemma 4.4. By Proposition
2.2, ﬂ(}’qi]% = (M) + JN. Hence, M <¥ JN is coherent by [7, Theorem
2.2.1].

(4) Assume that J is a finitely generated f(R)+J-module, p is surjective and
@ Y(JN) a finitely generated R-module. Suppose that M ¥ JN is a coherent
R </ J-module. Then, M is a coherent R-module by (2) and ¢(M) + JN is
a coherent f(R) + J-module by Lemma 4.3(2). We prove the converse by the
same arguments in (3). O

If weset M = R, N = S and ¢ = f, then the above theorem recovers a
known result for the amalgamation of rings.

Corollary 4.5 ([1, Theorem 2.2 (2)]). Assume that J and f~1(J) are finitely
generated ideals of f(R) + J and R, respectively. Then R <! J is a coherent
ring if and only if R and f(R) + J are coherent rings.

By letting R =5, N = M and ¢ = Idy;, Theorem 4.2 recovers the special
case of amalgamated duplication of a module along an ideal, as recorded in the
next corollary.

Corollary 4.6 ([2, Proposition 2.6]). Let I be a finitely generated ideal of
R. Then M <1 I is a coherent R <t I-module if and only if M is a coherent
R-module.

Theorem 4.2 recovers also a known result for the duplication of a ring along
an ideal by taking R =5 = M = N and ¢ = Idpg.

Corollary 4.7 ([1, Corollary 2.8]). Let I be a finitely generated ideal of R.
Then R 1 is a coherent ring if and only if R is a coherent ring.
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