• Title/Summary/Keyword: Multi-finger MOSFET

Search Result 10, Processing Time 0.024 seconds

Highly-Sensitive Gate/Body-Tied MOSFET-Type Photodetector Using Multi-Finger Structure

  • Jang, Juneyoung;Choi, Pyung;Kim, Hyeon-June;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.151-155
    • /
    • 2022
  • In this paper, we present a highly-sensitive gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector using multi-finger structure whose photocurrent increases in proportion to the number of fingers. The drain current that flows through a MOSFET using multi-finger structure is proportional to the number of fingers. This study intends to confirm that the photocurrent of a GBT MOSFET-type photodetector that uses the proposed multi-finger structure is larger than the photocurrent per unit area of the existing GBT MOSFET-type photodetectors. Analysis and measurement of a GBT MOSFET-type photodetector that utilizes a multi-finger structure confirmed that photocurrent increases in ratio to the number of fingers. In addition, the characteristics of the photocurrent in relation to the optical power were measured. In order to determine the influence of the incident the wavelength of light, the photocurrent was recorded as the incident the wavelength of light varied over a range of 405 to 980 nm. A highly-sensitive GBT MOSFET-type photodetector with multi-finger structure was designed and fabricated by using the Taiwan semiconductor manufacturing company (TSMC) complementary metal-oxide-semiconductor (CMOS) 0.18 um 1-poly 6-metal process and its characteristics have been measured.

Multi-finger MOSFET characteristics with channel width variation (게이트 폭의 변화에 따른 Multi-finger MOSFET의 특성 모델링)

  • Yim, Hyuck-Sang;Kang, Jung-Han;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.176-177
    • /
    • 2008
  • 이 논문에서는 $0.35{\mu}m$ 공정으로 제작된 MOSFET의 고주파 동작 특성을 분석하였다. Multi-finger 형태인 게이트 폭의 길이 변화에 따른 특성 변화를 BSIM3v3 모델과 외부 기생 파라미터를 포함한 lumped element를 이용해 모델링을 하였다. 또한 Multi-finger 게이트 구조에서 게이트 finger 수의 증가에 따라 생기는 특성 변화를 각각의 구조에 따라 추출된 주요 기생 파라미터의 변화를 통해 분석하였다.

  • PDF

A Study on Improved SPICE MOSFET RF Model Considering Wide Width Effect (Wide Width Effect를 고려하여 개선된 SPICE MOSFET RF Model 연구)

  • Cha, Ji-Yong;Cha, Jun-Young;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this study, the wide width effect that the increasing rate of drain current and the value of cutoff frequency decrease with larger finger number is observed. For modeling this effect, an improved SPICE MOSFET RF model that finger number-independent external source resistance is connected to a conventional BSIM3v3 RF model is developed. Better agreement between simulated and measured drain current and cutoff frequency at different finger number is obtained for the improved model than the conventional one, verifying the accuracy of the improved model for $0.13{\mu}m$ multi-finger MOSFET.

Accuracy Analysis of Substrate Model for Multi-Finger RF MOSFETs Using a New Parameter Extraction Method (새로운 파라미터 추출 방법을 사용한 Multi-Finger RF MOSFET의 기판 모델 정확도 비교)

  • Choi, Min-Kwon;Kim, Ju-Young;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • In this study, multi-finger RF MOSFET substrate parameters are accurately extracted by using S-parameters measured from common source-bulk and common source-gate test structures. Using this extraction method, the accuracy of an asymmetrical model with three substrate resistances is verified by observing better agreement with measured Y-parameters than a simple model with a single substrate resistance. The modeled S-parameters of the asymmetrical model also show excellent agreement with measured ones up to 20GHz.

Optimization of 70nm nMOSFET Performance using gate layout (게이트 레이아웃을 이용한 70nm nMOSFET 초고주파 성능 최적화)

  • Hong, Seung-Ho;Park, Min-Sang;Jung, Sung-Woo;Kang, Hee-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.581-582
    • /
    • 2006
  • In this paper, we investigate three different types of multi-fingered layout nMOSFET devices with varying $W_f$(unit finger width) and $N_f$(number of finger). Using layout modification, we improve $f_T$(current gain cutoff frequency) value of 15GHz without scaling down, and moreover, we decrease $NF_{min}$(minimum noise figure) by 0.23dB at 5GHz. The RF noise can be reduced by increasing $f_T$, choosing proper finger width, and reducing the gate resistance. For the same total gate width using multi-fingered layout, the increase of finger width shows high $f_T$ due to the reduced parasitic capacitance. However, this does not result in low $NF_{min}$ since the gate resistance generating high thermal noise becomes larger under wider finger width. We can obtain good RF characteristics for MOSFETs by using a layout optimization technique.

  • PDF

Hot electron induced degradation model of the DC and RF characteristics of RF-nMOSFET (Hot electron에 의한 RF-nMOSFET의 DC및 RF 특성 열화 모델)

  • 이병진;홍성희;유종근;전석희;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.62-69
    • /
    • 1998
  • The general degradation model has been applied to analyze the hot carrier induced degradation of the DC and RF characteristics of RF-nMOSFET. The degradation of cut-off frequency has been severer than the degradation of bulk MOSFET drain current. The value of the degradation rate n and the degradation parameter m for RF-nMOSFET has been equal to those for bulk MOSFET. The decrease of device degradation with the increase of fingers could be explained by the large source/drain parasitic resistance and drain saturation voltage. It has been also found that the RF performance degradation could be explained by the decrease of $g_{m}$ and $C_{gd}$ and the increase of $g_{ds}$ after stress. The degradation of the DC and RF characteristics of RF-nMOSFET could be predicted by the measurement of the substrate current.t.

  • PDF

An Analysis of Bias-Dependent S11-Parameter in Multi-Finger MOSFETs (Multi-Finger MOSFET의 바이어스 종속 S11-파라미터 분석)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.15-19
    • /
    • 2016
  • The gate bias dependence of kink phenomenon with a large deviation from the resistance circle in Smith chart is observed in the frequency response of $S_{11}$-parameter for large multi-finger RF MOSFETs. For the first time, this bias dependence is analyzed by measuring magnitude and phase of $S_{11}$-parameter, input resistance and input capacitance. As a result, $V_{gs}$ dependent $S_{11}$-parameter is largely changed by the magnitude of input capacitance as well as dominant pole and zero frequencies of input resistance. At $V_{gs}=0V$, the kink phenomenon occurs in the high frequency region because of very small phase difference of $S_{11}$-parameter and high pole frequency of input resistance. However, the kink phenomenon at higher $V_{gs}$ is generated in the low frequency region owing to large phase difference and low pole frequency.

Modeling Electrical Characteristics for Multi-Finger MOSFETs Based on Drain Voltage Variation

  • Kang, Min-Gu;Yun, Il-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.245-248
    • /
    • 2011
  • The scaling down of metal oxide semiconductor field-effect transistors (MOSFETs) for the last several years has contributed to the reduction of the scaling variables and device parameters as well as the operating voltage of the MOSFET. At the same time, the variation in the electrical characteristics of MOSFETs is one of the major issues that need to be solved. Especially because the issue with variation is magnified as the drive voltage is decreased. Therefore, this paper will focus on the variations between electrical characteristics and drain voltage. In order to do this, the test patterned multi-finger MOSFETs using 90-nm process is used to investigate the characteristic variations, such as the threshold voltage, DIBL, subthreshold swing, transconductance and mobility via parasitic resistance extraction method. These characteristics can be analyzed by varying the gate width and length, and the number of fingers. Through this modeling scheme, the characteristic variations of multi-finger MOSFETs can be analyzed.

Decrease of Parasitic Capacitance for Improvement of RF Performance of Multi-finger MOSFETs in 90-nm CMOS Technology

  • Jang, Seong-Yong;Kwon, Sung-Kyu;Shin, Jong-Kwan;Yu, Jae-Nam;Oh, Sun-Ho;Jeong, Jin-Woong;Song, Hyeong-Sub;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.312-317
    • /
    • 2015
  • In this paper, the RF characteristics of multi-finger MOSFETs were improved by decreasing the parasitic capacitance in spite of increased gate resistance in a 90-nm CMOS technology. Two types of device structures were designed to compare the parasitic capacitance in the gate-to-source ($C_{gs}$) and gate-to-drain ($C_{gd}$) configurations. The radio frequency (RF) performance of multi-finger MOSFETs, such as cut-off frequency ($f_T$) and maximum-oscillation frequency ($f_{max}$) improved by approximately 10% by reducing the parasitic capacitance about 8.2% while maintaining the DC performance.

A study on the hot carrier induced performance degradation of RF NMOSFET′s (Hot carrier에 의한 RF NMOSFET의 성능저하에 관한 연구)

  • 김동욱;유종근;유현규;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.60-66
    • /
    • 1998
  • The hot carrier induced performance degradation of 0.8${\mu}{\textrm}{m}$ RF NMOSFET has been investigated within the general framework of the degradation mechanism. The device degradation model of an unit finger gate MOSFET could be applied for the device degradation of the multi finger gate RF NMOSFET. The reduction of cut-off frequency and maximum frequency can be explained by the transconductance reduction and the drain output conductance increase, which are due to the interface state generation after the hot carrier stressing. From the correlation between hot carrier induced DC and RF performance degradation, we can predict the RF performance degradation just by the DC performance degradation measurement.

  • PDF