• Title/Summary/Keyword: Microalgae

Search Result 576, Processing Time 0.034 seconds

Comparison of Marine Microalgae Growth Using LED Lights (LED광원을 이용한 해양미세조류의 성장 비교)

  • KANG, Man-Gu;LIM, Su Yeon;LEE, Chang-Hyeok;BAEK, Hyang Ran;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.552-559
    • /
    • 2017
  • To assess the effect of LED lights on marine microalgae growth in the laboatory, Tetraselmis suecica, Chaetoceros simplex and Isochrysis galbana were cultured under $20{\pm}1^{\circ}C$, Walne's medium and aeration using 3.6 L glass vessels. The LED light sources were Blue, Red, Blue+Red, CoolWhite and WarmWhite. The experiments were conducted three times. The density of microalgae was shown as the counted number of cells per day, and the specific growth rate was calculated by using the density. The statistical analysis was performed by analysis of variance using the SPSS 20.0 program. T. suecica culture was the highest density under the Blue LED light source, so the light source was the most effective for the growth of this alga. C. simplex and I. galbana culture had the highest density under the Blue+Red LED light source, therefore this light source was the most effective for the growth of these algae. The result of analysis of variance showed significant between groups.

Flocculation Characteristics of Microalgae Through Combined Flocculants (응집제 혼합을 이용한 미세조류의 응집 특성)

  • Kwon, Do-Yeon;Jung, Chang-Kyou;Lee, Choul-Gyun;Lee, Jin-Won
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.443-452
    • /
    • 2011
  • In this study, inorganic flocculant with biodegradable polymer flocculant was usedfor microalgae harvest. The aim of this study was to optimize the concentration of inorganic flocculant, the concentration of biodegradable polymer flocculant and reaction volume for decreasing the amounts of flocculant and obtaining the suitable pH range for seawater by response surface methodology. The flocculation of three marine microalgae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, using inorganic flocculants and biodegradable polymer flocculants was investigated. The results indicated that the optimal flocculant quantity showed 0.1 g/L of ferric chloride, 7.5 g/L of chitosan on Chlorella ellipsoidea. In the case of Dunaliella bardawil, the optimal flocculant quantity showed amount of ferric sulfate more than 0.12 g/L and chitosan more than 0.75 g/L. In the case of Dunaliella tertiolecta, the optimal flocculant quantity showed 1.0 g/L of sodium aluminate, 0.75 g/L of chitosan.

Delivery of Protein into Microalgae by the Digital Electroporation (디지털 전기천공을 이용한 미세조류 내 단백질 전달 연구)

  • Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • In the present study, we performed electroporation to deliver protein into microalgae using previously developed digital electroporation system. Green fluorescence protein was successfully delivered into a live microalgae cell nucleus without cell wall removal. By investigating the effects of applied voltage on the protein delivery efficiency, optimal electroporation electric field condition was found (960 V/cm). We also investigated the delivery of Yo-Pro-1 into cell to examine the size effects of delivered materials and found that there is little size effects on the optimal condition. Finally, the implications of the present results and future work are discussed.

Astaxanthin in microalgae: pathways, functions and biotechnological implications

  • Han, Danxiang;Li, Yantao;Hu, Qiang
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.131-147
    • /
    • 2013
  • Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.

Optimization of POME treatment process using microalgae and ultrafiltration

  • Ibrahim, R.I.;Mohammad, A.W.;Wong, Z.H.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.293-308
    • /
    • 2015
  • Palm oil mill effluent (POME) was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients and high levels of COD and BOD concentrations. This study was devoted on POME treatment and purification using an integrated process consisting of microalgae treatment followed by membrane filtration. The main objective was to find the optimum conditions as retention time and pH in the biological treatment of POME. Since after the optimum conditions there is a diverse effect of time and the process become costly. According to our knowledge, there is no existing study optimized the retention time and percentage removal of nutrients for microalgae treatment of POME wastewater. In order to achieve with optimization, a second order polynomial model regression coefficients and goodness of fit results in removal percentages of ammonia nitrogen ($NH_3-N$), orthophosphorous ($PO_4{^{-3}}$), COD, TSS, and turbidity were estimated. WinQSB technique was used to optimize the objective function of the developed model, and the optimum conditions were found. Also, ultrafiltration membrane is useful for purification of POME samples as verified by experiments.

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

Harvesting of Oleaginous Microalgae Chlorella sp. by CaCO3 Mineralization

  • Kim, Dong Hyun;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.386-391
    • /
    • 2021
  • The formation of CaCO3 in microalgal culture is investigated and applied for effective separation of microalgae. The presence of several cationic ions in the culture medium mediates the formation of 3 types of mineral precipitates depending on the concentration of mineral precursors, Ca2+ and CO32-, amorphous nano-flakes, rhombohedral calcites, and spherical vaterites. While amorphous phased precipitates are formed for all concentrations of mineral precursor, only calcites are formed for 30 mM solutions of mineral precursor, and mixtures of calcites and vaterites are formed for 50 and 100 mM solutions of mineral precursor. The harvesting efficiency is also dependent on the concentration of the mineral precursor: from 90 % for 10 mM to 99 % for 100 mM after 60 mins' of gravitational sedimentation. The formation of nano-flakes on the surface of microalgal cells induces the flocculation of microalgae by breaking the stable dispersion. The negatively charged surface of the microalgal cell is compatible not only with nano-flake attachment but also with the growth of calcitic crystals in which microalgal cells are embedded.

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes (전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산)

  • Lee, Chae-Young;Na, Dong-Chae;Choi, Jae-Min;Kang, Doo-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater

  • Kim, Byung-Hyuk;Choi, Jong-Eun;Cho, Kichul;Kang, Zion;Ramanan, Rishiram;Moon, Doo-Gyung;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.630-637
    • /
    • 2018
  • The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.

Cellular growth and fatty acid content of Arctic chlamydomonadalean

  • Jung, Woongsic;Kim, Eun Jae;Lim, Suyoun;Sim, Hyunji;Han, Se Jong;Kim, Sanghee;Kang, Sung-Ho;Choi, Han-Gu
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.