DOI QR코드

DOI QR Code

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater

  • Kim, Byung-Hyuk (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Jong-Eun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Cho, Kichul (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Zion (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ramanan, Rishiram (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Moon, Doo-Gyung (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Hee-Sik (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2018.01.09
  • Accepted : 2018.01.30
  • Published : 2018.04.28

Abstract

The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.

Keywords

References

  1. Kim B-H, Kang Z, Ramanan R, Choi J-E, Cho D-H, Oh H-M, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132. https://doi.org/10.4014/jmb.1312.12057
  2. Kang Z, Kim B-H, Ramanan R, Choi J-E, Yang J-W, Oh H-M, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118. https://doi.org/10.4014/jmb.1409.09019
  3. Kim B-H, Kim D-H, Choi J-W, Kang Z, Cho D-H, Kim J-Y, et al. 2015. Polypropylene bundle attached multilayered Stigeoclonium biofilms cultivated in untreated sewage generate high biomass and lipid productivity. J. Microbiol. Biotechnol. 25: 1547-1554. https://doi.org/10.4014/jmb.1501.01033
  4. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  5. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, et al. 2013. Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl. Energy 102: 101-111. https://doi.org/10.1016/j.apenergy.2012.07.040
  6. Ketheesan B, Nirmalakhandan N. 2012. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol. 108: 196-202. https://doi.org/10.1016/j.biortech.2011.12.146
  7. Liffman K, Paterson DA, Liovic P, Bandopadhayay P. 2013. Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chem. Eng. Res. Des. 91: 221-226. https://doi.org/10.1016/j.cherd.2012.08.007
  8. Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Banks C, et al. 2013. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54: 267-275. https://doi.org/10.1016/j.biombioe.2013.03.017
  9. Sompech K, Chisti Y, Srinophakun T. 2012. Design of raceway ponds for producing microalgae. Biofuels 3: 387-397. https://doi.org/10.4155/bfs.12.39
  10. Atta M, Idris A, Bukhari A, Wahidin S. 2013. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 148: 373-378. https://doi.org/10.1016/j.biortech.2013.08.162
  11. Wahidin S, Idris A, Shaleh SRM. 129. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129: 7-11. https://doi.org/10.1016/j.biortech.2012.11.032
  12. Dodd J. 1986. Elements of Pond Design and Construction, pp. 265-283. CRC, Boca Raton.
  13. Grobbelaar JU. 2013. Mass Production of Microalgae at Optimal Photosynthetic Rates. INTECHOPEN, Rijeka, Croatia
  14. APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.
  15. Jeffrey St, Humphrey G. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191194.
  16. Smith VH, Sturm BSM, deNoyelles FJ, Billings SA. 2010. The ecology of algal biodiesel production. Trends Ecol. Evol. 25: 301-309. https://doi.org/10.1016/j.tree.2009.11.007
  17. Weis JJ, Madrigal DS, Cardinale BJ. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS One 3: e2825. https://doi.org/10.1371/journal.pone.0002825
  18. Craggs R, Sutherland D, Campbell H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 24: 329-337. https://doi.org/10.1007/s10811-012-9810-8
  19. Benemann JR. 2003. Biofixation of $CO_2$ and greenhouse gas abatement with microalgae - technology roadmap. Final Report No. 7010000926. US Department of Energy, National Energy Technology Laboratory.
  20. Rawat I, Ranjith Kumar R, Mutanda T, Bux F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88: 3411-3424. https://doi.org/10.1016/j.apenergy.2010.11.025
  21. Grobbelaar JU. 2010. Microalgal biomass production: challenges and realities. Photosynth. Res. 106: 135-144. https://doi.org/10.1007/s11120-010-9573-5
  22. Azov Y, Shelef G. 1982. Operation of high-rate oxidation ponds: theory and experiments. Water Res. 16: 1153-1160. https://doi.org/10.1016/0043-1354(82)90133-6
  23. Larsdotter K. 2006. Wastewater treatment with microalgae - a literature review. Vatten 62: 31-38.
  24. Grobbelaar JU. 2012. Microalgal mass culture: the constraints of scaling-up. J. Appl. Phycol. 24: 315-318. https://doi.org/10.1007/s10811-011-9728-6
  25. Park JBK, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102: 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
  26. Kroon BMA, Keyelaars HAM, Fallowfield HJ, Mur LR. 1989. Modelling high rate algal pond productivity using wavelength dependent optical properties. J. Appl. Phycol. 1: 247-256. https://doi.org/10.1007/BF00003650
  27. Borowitzka MA. 2005. Culturing Microalgae in Outdoor Ponds. Elsevier Academic, London, UK.
  28. Borowitzka MA, Moheimani NR. 2013. Open Pond Culture Systems. Springer, New York.
  29. Grobbelaar JU, Soeder CJ, Stengel E. 1990. Modelling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21: 297-314. https://doi.org/10.1016/0144-4565(90)90079-Y
  30. Moheimani NR, Borowitzka MA. 2007. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol. Bioeng. 96: 27-36. https://doi.org/10.1002/bit.21169
  31. James SC, Boriah V. 2010. Modeling algae growth in an open-channel raceway. J. Comput. Biol. 17: 895-906. https://doi.org/10.1089/cmb.2009.0078
  32. Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A. 2013. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem. Eng. J. 217: 231-239. https://doi.org/10.1016/j.cej.2012.12.015
  33. Gudin C, Thepenier C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6: 73-110.
  34. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2: 012701. https://doi.org/10.1063/1.3294480
  35. Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130

Cited by

  1. High Productivity Cultivation of Microalgae without Concentrated CO2 Input vol.7, pp.2, 2018, https://doi.org/10.1021/acssuschemeng.8b04094
  2. Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation vol.8, pp.None, 2018, https://doi.org/10.7717/peerj.9418
  3. Feasibility of Utilizing Wastewaters for Large-Scale Microalgal Cultivation and Biofuel Productions Using Hydrothermal Liquefaction Technique: A Comprehensive Review vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.651138
  4. Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance vol.20, pp.1, 2018, https://doi.org/10.1007/s11157-020-09556-8
  5. Biomass Production Potential in a River under Climate Change Scenarios vol.55, pp.16, 2018, https://doi.org/10.1021/acs.est.1c03211
  6. Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae vol.14, pp.21, 2018, https://doi.org/10.3390/en14216992
  7. Effect of medium recycling, culture depth, and mixing duration on D. salina growth vol.60, pp.None, 2018, https://doi.org/10.1016/j.algal.2021.102495
  8. Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate vol.60, pp.None, 2018, https://doi.org/10.1016/j.algal.2021.102509
  9. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy vol.344, pp.no.pb, 2022, https://doi.org/10.1016/j.biortech.2021.126397