References
- Kim B-H, Kang Z, Ramanan R, Choi J-E, Cho D-H, Oh H-M, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132. https://doi.org/10.4014/jmb.1312.12057
- Kang Z, Kim B-H, Ramanan R, Choi J-E, Yang J-W, Oh H-M, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118. https://doi.org/10.4014/jmb.1409.09019
- Kim B-H, Kim D-H, Choi J-W, Kang Z, Cho D-H, Kim J-Y, et al. 2015. Polypropylene bundle attached multilayered Stigeoclonium biofilms cultivated in untreated sewage generate high biomass and lipid productivity. J. Microbiol. Biotechnol. 25: 1547-1554. https://doi.org/10.4014/jmb.1501.01033
- Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
- Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, et al. 2013. Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl. Energy 102: 101-111. https://doi.org/10.1016/j.apenergy.2012.07.040
- Ketheesan B, Nirmalakhandan N. 2012. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol. 108: 196-202. https://doi.org/10.1016/j.biortech.2011.12.146
- Liffman K, Paterson DA, Liovic P, Bandopadhayay P. 2013. Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chem. Eng. Res. Des. 91: 221-226. https://doi.org/10.1016/j.cherd.2012.08.007
- Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Banks C, et al. 2013. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54: 267-275. https://doi.org/10.1016/j.biombioe.2013.03.017
- Sompech K, Chisti Y, Srinophakun T. 2012. Design of raceway ponds for producing microalgae. Biofuels 3: 387-397. https://doi.org/10.4155/bfs.12.39
- Atta M, Idris A, Bukhari A, Wahidin S. 2013. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 148: 373-378. https://doi.org/10.1016/j.biortech.2013.08.162
- Wahidin S, Idris A, Shaleh SRM. 129. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129: 7-11. https://doi.org/10.1016/j.biortech.2012.11.032
- Dodd J. 1986. Elements of Pond Design and Construction, pp. 265-283. CRC, Boca Raton.
- Grobbelaar JU. 2013. Mass Production of Microalgae at Optimal Photosynthetic Rates. INTECHOPEN, Rijeka, Croatia
- APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.
- Jeffrey St, Humphrey G. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191194.
- Smith VH, Sturm BSM, deNoyelles FJ, Billings SA. 2010. The ecology of algal biodiesel production. Trends Ecol. Evol. 25: 301-309. https://doi.org/10.1016/j.tree.2009.11.007
- Weis JJ, Madrigal DS, Cardinale BJ. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS One 3: e2825. https://doi.org/10.1371/journal.pone.0002825
- Craggs R, Sutherland D, Campbell H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 24: 329-337. https://doi.org/10.1007/s10811-012-9810-8
-
Benemann JR. 2003. Biofixation of
$CO_2$ and greenhouse gas abatement with microalgae - technology roadmap. Final Report No. 7010000926. US Department of Energy, National Energy Technology Laboratory. - Rawat I, Ranjith Kumar R, Mutanda T, Bux F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88: 3411-3424. https://doi.org/10.1016/j.apenergy.2010.11.025
- Grobbelaar JU. 2010. Microalgal biomass production: challenges and realities. Photosynth. Res. 106: 135-144. https://doi.org/10.1007/s11120-010-9573-5
- Azov Y, Shelef G. 1982. Operation of high-rate oxidation ponds: theory and experiments. Water Res. 16: 1153-1160. https://doi.org/10.1016/0043-1354(82)90133-6
- Larsdotter K. 2006. Wastewater treatment with microalgae - a literature review. Vatten 62: 31-38.
- Grobbelaar JU. 2012. Microalgal mass culture: the constraints of scaling-up. J. Appl. Phycol. 24: 315-318. https://doi.org/10.1007/s10811-011-9728-6
- Park JBK, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102: 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
- Kroon BMA, Keyelaars HAM, Fallowfield HJ, Mur LR. 1989. Modelling high rate algal pond productivity using wavelength dependent optical properties. J. Appl. Phycol. 1: 247-256. https://doi.org/10.1007/BF00003650
- Borowitzka MA. 2005. Culturing Microalgae in Outdoor Ponds. Elsevier Academic, London, UK.
- Borowitzka MA, Moheimani NR. 2013. Open Pond Culture Systems. Springer, New York.
- Grobbelaar JU, Soeder CJ, Stengel E. 1990. Modelling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21: 297-314. https://doi.org/10.1016/0144-4565(90)90079-Y
- Moheimani NR, Borowitzka MA. 2007. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol. Bioeng. 96: 27-36. https://doi.org/10.1002/bit.21169
- James SC, Boriah V. 2010. Modeling algae growth in an open-channel raceway. J. Comput. Biol. 17: 895-906. https://doi.org/10.1089/cmb.2009.0078
- Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A. 2013. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem. Eng. J. 217: 231-239. https://doi.org/10.1016/j.cej.2012.12.015
- Gudin C, Thepenier C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6: 73-110.
- Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2: 012701. https://doi.org/10.1063/1.3294480
- Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
Cited by
- High Productivity Cultivation of Microalgae without Concentrated CO2 Input vol.7, pp.2, 2018, https://doi.org/10.1021/acssuschemeng.8b04094
- Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation vol.8, pp.None, 2018, https://doi.org/10.7717/peerj.9418
- Feasibility of Utilizing Wastewaters for Large-Scale Microalgal Cultivation and Biofuel Productions Using Hydrothermal Liquefaction Technique: A Comprehensive Review vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.651138
- Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance vol.20, pp.1, 2018, https://doi.org/10.1007/s11157-020-09556-8
- Biomass Production Potential in a River under Climate Change Scenarios vol.55, pp.16, 2018, https://doi.org/10.1021/acs.est.1c03211
- Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae vol.14, pp.21, 2018, https://doi.org/10.3390/en14216992
- Effect of medium recycling, culture depth, and mixing duration on D. salina growth vol.60, pp.None, 2018, https://doi.org/10.1016/j.algal.2021.102495
- Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate vol.60, pp.None, 2018, https://doi.org/10.1016/j.algal.2021.102509
- Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy vol.344, pp.no.pb, 2022, https://doi.org/10.1016/j.biortech.2021.126397