Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.2.8

Cellular growth and fatty acid content of Arctic chlamydomonadalean  

Jung, Woongsic (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Kim, Eun Jae (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Lim, Suyoun (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Sim, Hyunji (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Kim, Sanghee (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Kang, Sung-Ho (Division of Ocean Environment, Korea Polar Research Institute, KIOST)
Choi, Han-Gu (Division of Life Sciences, Korea Polar Research Institute, KIOST)
Publication Information
ALGAE / v.31, no.1, 2016 , pp. 61-72 More about this Journal
Abstract
Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.
Keywords
Arctic; chlamydomonadalean; fatty acid methyl ester; microalgae; psychrophilic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buchheim, M. A., Lemieux, C., Otis, C., Gutell, R. R., Chapman, R. L. & Turmel, M. 1996. Phylogeny of the Chlamydomonadales (Chlorophyceae) a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol. Phylogenet. Evol. 5:391-402.   DOI
2 Abomohra, A. E. -F., Wagner, M., El-Sheekh, M. & Hanelt, D. 2013. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J. Appl. Phycol. 25:931-936.   DOI
3 Ahn, J. -W., Hwangbo, K., Lee, S. Y., Choi, H. -G., Park, Y. -I., Liu, J. R. & Jeong, W. -J. 2012. A new Arctic Chlorella species for biodiesel production. Bioresour. Technol. 125:340-343.   DOI
4 Buchheim, M. A., Buchheim, J. A. & Chapman, R. L. 1997. Phylogeny of the VLE-14 Chlamydomonas (Chlorophyceae) group: a study of 18S rRNA gene sequences. J. Phycol. 33:1024-1030.   DOI
5 Buchheim, M. A., Turmel, M., Zimmer, E. A. & Chapman, R. L. 1990. Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S rRNA sequence data. J. Phycol. 26:689-699.   DOI
6 Chaffin, J. D., Mishra, S., Kuhaneck, R. M., Heckathorn, S. A. & Bridgeman, T. B. 2012. Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: a candidate for biofuel production. J. Appl. Phycol. 24:1045-1051.   DOI
7 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306.   DOI
8 Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5:301-309.   DOI
9 Eddie, B., Krembs, C. & Neuer, S. 2008. Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar. Ecol. Prog. Ser. 354:107-117.   DOI
10 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639.   DOI
11 Ettl, H. 1976. Die Gattung Chlamydomonas Ehrenberg. Nova Hedwig. Beih. 49:1-1122.
12 Fedorov, A. S., Kosourov, S., Ghirardi, M. L. & Seibert, M. 2005. Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfatelimited chemostat system. Appl. Biochem. Biotechnol. 121-124:403-412.
13 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
14 Huang, G. H., Chen, F., Wei, D., Zhang, X. W. & Chen, G. 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87:38-46.   DOI
15 Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.   DOI
16 Kapdan, I. K. & Kargi, F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38:569-582.   DOI
17 Liang, K., Zhang, Q., Gu, M. & Cong, W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 25:311-318.   DOI
18 Nakada, T. & Nozaki, H. 2009. Taxonomic study of two new genera of fusiform green flagellates Tabris gen. nov. and Hamakko gen. nov. (Volvocales, Chlorophyceae). J. Phycol. 45:482-492.   DOI
19 Mahapatra, D. M., Chanakya, H. N. & Ramachandra, T. V. 2013. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J. Appl. Phycol. 25:855-865.   DOI
20 Margesin, R., Schinner, F., Marx, J. C. & Gerday, C. 2008. Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, 462 pp.
21 Martínez, M. E., Sánchez, S., Jiménez, J. M., El Yousfi, F. & Muñoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73:263-272.   DOI
22 Mata, T. M., Martins, A. A. & Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:217-232.   DOI
23 Nakada, T., Misawa, K. & Nozaki, H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48:281-291.   DOI
24 Nigam, S., Rai, M. P. & Sharma, R. 2011. Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol. 7:124-129.   DOI
25 Nozaki, H., Misumi, O. & Kuroiwa, T. 2003. Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol. Phylogenet. Evol. 29:58-66.   DOI
26 Pandey, A., Lee, D. -J., Chisti, Y. & Soccol, C. R. 2014. Biofuels from algae. Elsevier, San Diego, CA, 348 pp.
27 Ruiz-Marin, A., Mendoza-Espinosa, L. G. & Stephenson, T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101:58-64.   DOI
28 Park, K. C., Whitney, C., McNichol, J. C., Dickinson, K. E., MacQuarrie, S., Skrupski, B. P., Zou, J., Wilson, K. E., O’Leary, S. J. B. & McGinn, P. J. 2012. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J. Appl. Phycol. 24:339-348.   DOI
29 Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.   DOI
30 Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1:20-43.   DOI
31 Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Microbial Identification Inc., Newark, De, 5 pp.
32 Saunders, G. W. & Kraft, G. T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta): I. evidence for the Plocamiales ord. nov. Can. J. Bot. 72:1250-1263.   DOI
33 Seaburg, K. G., Parked, B. C., Wharton, R. A. Jr. & Simmons, G. M. Jr. 1981. Temperature-growth responses of algal isolates from Antarctic oases. J. Phycol. 17:353-360.   DOI
34 Singh, S., Kate, B. N. & Banerjee, U. C. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25:73-95.   DOI
35 Vello, V., Phang, S. -M., Chu, W. -L., Majid, N. A., Lim, P. -E. & Loh, S. -K. 2014. Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J. Appl. Phycol. 26:1399-1413.   DOI
36 Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W. & Gillevet, P. M. 1994. The genetic data environment an expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10:671-675.
37 Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96.   DOI
38 Stamatakis, A. 2014. RAxMLversion 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.   DOI
39 Tang, E. P. Y., Tremblay, R. & Vincent, W. F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33:171-181.   DOI
40 Teoh, M. -L., Chu, W. -L., Marchant, H. & Phang, S. -M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16:421-430.   DOI
41 Teoh, M. -L., Phang, S. -M. & Chu, W. -L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol. 25:285-297.   DOI
42 Walker, T. L., Purton, S., Becker, D. K. & Collet, C. 2005. Microalgae as bioreactor. Plant Cell Rep. 24:629-641.   DOI
43 Wang, B. & Lan, C. Q. 2011. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 102:5639-5644.   DOI
44 Zhang, E., Wang, B., Wang, Q., Zhang, S. & Zhao, B. 2008. Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour. Technol. 99:3787-3793.   DOI
45 Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. & Ruan, R. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162:1174-1186.   DOI
46 Yumoto, I. 2013. Cold-adapted microorganisms. Caister Academic Press, Norfolk, 226 pp.