Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.2.131

Astaxanthin in microalgae: pathways, functions and biotechnological implications  

Han, Danxiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
Li, Yantao (The Institute of Marine and Environmental Technology (IMET), The University of Maryland)
Hu, Qiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
Publication Information
ALGAE / v.28, no.2, 2013 , pp. 131-147 More about this Journal
Abstract
Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.
Keywords
astaxanthin biosynthesis; Chlorella zofingiensis; genetic engineering; Haematococcus pluvialis; mass culture; photooxidative stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hagen, C., Braune, W. & Bjorn, L. O. 1994. Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a sunshade. J. Phycol. 30:241-248.   DOI   ScienceOn
2 Hagen, C., Braune, W. & Greulich, F. 1993. Functional-aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J. Photochem. Photobiol. B 20:153-160.   DOI   ScienceOn
3 Hagen, C., Grunewald, K., Schmidt, S., & Muller, J. 2000. Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur. J. Phycol. 35:75-82.   DOI   ScienceOn
4 Hagen, C., Siegmund, S. & Braune, W. 2008. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Vovocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37:217-226.
5 Han, D., Wang, J., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and potective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705.   DOI   ScienceOn
6 Harker, M., Tsavalos, A. J. & Young, A. J. 1996a. Autotrophic growth and carotenoid production of Haematococcus Chlorophycepluvialis in a 30 liter air-lift photobioreactor. J. Ferment. Bioeng. 82:113-118.   DOI   ScienceOn
7 Harker, M., Tsavalos, A. J. & Young, A. J. 1996b. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55:207-214.   DOI   ScienceOn
8 Hasunuma, T., Miyazawa, S. I., Yoshimura, S., Shinzaki, Y., Tomizawa, K. I., Shindo, K., Choi, S. K., Misawa, N. & Miyake, C. 2008. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55:857-868.   DOI   ScienceOn
9 Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H. & Tanaka, H. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J. Appl. Phycol. 13:395-402.   DOI   ScienceOn
10 Hershkovits, G., Dubinsky, Z. & Katcoff, D. J. 1997. A novel homologue of the prokaryotic htrA gene is differentially expressed in the alga Haematococcus pluvialis following stress. Mol. Gen. Genet. 254:345-350.   DOI
11 Hoffman, Y., Aflalo, C., Zarka, A., Gutman, J., James, T. Y. & Boussiba, S. 2008. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haermatococcus. Mycol. Res. 112:70-81.   DOI   ScienceOn
12 Holtin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G. & Albert, K. 2009. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 395:1613-1622.   DOI   ScienceOn
13 Disch, A., Schwender, J., Muller, C., Lichtenthaler, H. K. & Rohmer, M. 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333:381-388.   DOI
14 Droop, M. R. 1954. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Arch. Microbiol. 20:391-397.
15 Elliot, A. M. 1934. Morphology and life history of Haematococcus pluvialis. Arch. Protistenk 82:250-272.
16 Eom, H., Lee, C. G. & Jin, E. 2006. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231-1242.   DOI   ScienceOn
17 Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71.   DOI   ScienceOn
18 Fey, V., Wagner, R., Brautigam, K. & Pfannschmidt, T. 2005. Photosynthetic redox control of nuclear gene expression. J. Exp. Bot. 56:1491-1498.   DOI   ScienceOn
19 Fan, L., Vonshak, A. & Boussiba, S. 1994. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30:829-833.   DOI   ScienceOn
20 Fan, L., Vonshak, A., Zarka, A. & Boussiba, S. 1998. Does astaxanthin protect Haematococcus against light damage? Z. Naturforsch. C 53:93-100.
21 Fraser, P. D., Shimada, H. & Misawa, N. 1998. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur. J. Biochem. 252:229-236.   DOI   ScienceOn
22 Garcia-Malea, M. C., Acien, F. G., Del Rio, E., Fernandez, J. M., Ceron, M. C., Guerrero, M. G. & Molina-Grima, E. 2009. Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol. Bioeng. 102:651-657.   DOI   ScienceOn
23 Green, J. 1963. Occurrence of astaxanthin in euglenoid Trachelomonas volvocina. Comp. Biochem. Physiol. 9:313-316.   DOI   ScienceOn
24 Grunewald, K., Eckert, M., Hirschberg, J. & Hagen, C. 2000. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol. 122:1261-1268.   DOI
25 Grunewald, K., Hirschberg, J. & Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276:6023-6029.   DOI   ScienceOn
26 Grung, M., Metzger, P. & Liaaen-Jensen, S. 1994. Algal carotenoids 53: secondary carotenoids of algae 4. Secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochem. Syst. Ecol. 22:25-29.   DOI   ScienceOn
27 Choi, Y. -E., Yun, Y. -S., Park, J. M. & Yang, J. -W. 2011. Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresour. Technol. 102:11249-11253.   DOI   ScienceOn
28 Guerin, M., Huntley, M. E. & Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216.   DOI   ScienceOn
29 Gutman, J., Zarka, A. & Boussiba, S. 2009. The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur. J. Phycol. 44:509-514.   DOI   ScienceOn
30 Choi, Y. E., Yun, Y. -S. & Park, J. M. 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18:1170-1175.   DOI   ScienceOn
31 Cifuentes, A. S., Gonzalez, M. A., Vargas, S., Hoeneisen, M. & Gonzalez, N. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36:343-357.
32 Cordero, B. F., Couso, I., Leon, R., Rodriguez, H. & Vargas, M. A. 2011. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl. Microbiol. Biotechnol. 91:341-351.   DOI
33 Cordero, B. F., Couso, I., Leon, R., Rodriguez, H. & Vargas, M. A. 2012. Isolation and characterization of a lycopene epsilon-cyclase gene of Chlorella (Chromochloris) zofingiensis: regulation of the carotenogenic pathway by nitrogen and light. Mar. Drugs 10:2069-2088.   DOI
34 Cordero, B. F., Obraztsova, I., Martin, L., Couso, I., Leon, R., Vargas, M. A. & Rodriguez, H. 2010. Isolation and characterization of a lycopene ${\beta}$-cyclase gene from the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J. Phycol. 46:1229-1238.   DOI   ScienceOn
35 Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rilight vas, J. & Guerrero, M. G. 2004. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 64:848-854.   DOI
36 Cunningham, F. X. & Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:557-583.   DOI   ScienceOn
37 Cunningham, F. X., Pogson, B., Sun, Z., McDonald, K. A., DellaPenna, D. & Gantt, E. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613-1626.
38 Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623.   DOI
39 Del Rio, E., Acien, F. G., Garcia-Malea, M. C., Rivas, J., Molina-Grima, E. & Guerrero, M. G. 2005. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol. Bioeng. 91:808-815.   DOI   ScienceOn
40 Del Rio, E., Acien, F. G., Garcia-Malea, M. C., Rivas, J., Molina-Grima, E. & Guerrero, M. G. 2008. Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol. Bioeng. 100:397-402.   DOI   ScienceOn
41 Bar, E., Rise, M., Vishkautsan, M. & Arad, S. 1995. Pigment and structural changes in Chlorella zofingiensis upon and nitrogen stress. J. Plant Physiol. 146:527-534.   DOI   ScienceOn
42 Barbosa, M. J., Morais, R. & Choubert, G. 1999. Effect of carotenoid source and dietary lipid content on blood astaxanthin concentration in rainbow trout (Oncorhynchus mykiss). Aquaculture 176:331-341.   DOI   ScienceOn
43 Zhong, Y. -J., Huang, J. -C., Liu, J., Li, Y., Jiang, Y., Xu, Z. -F., Sandmann, G. & Chen, F. 2011. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62:3659-3669.   DOI   ScienceOn
44 Yuan, J. -P., Gong, X. -D. & Chen, F. 1997. Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection. J. Agric. Food Chem. 45:1952-1956.   DOI   ScienceOn
45 Zhang, X. W., Gong, X. -D. & Chen, F. 1999. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J. Ind. Microbiol. Biotechnol. 23:691-696.   DOI   ScienceOn
46 Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A. & Cohen, Z. 2002. Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38:325-331.   DOI   ScienceOn
47 Zlotnik, I., Sukenik, A. & Dubinsky, Z. 1993. Physiological and photosynthetic changes during the formation of red aplanospores in the Chlorophyte Haematococcus pluvialis. J. Phycol. 29:463-469.   DOI   ScienceOn
48 Triki, A., Maillard, P. & Gudin, C. 1997. Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta). Phycologia 36:190-194.   DOI
49 Ugwu, C. U., Aoyagi, H. & Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99:4021-4028.   DOI   ScienceOn
50 Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W. & Macko, S. A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29:427-434.   DOI   ScienceOn
51 Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant. 108:111-117.   DOI   ScienceOn
52 Boussiba, S., Bing, W., Yuan, J. -P., Zarka, A. & Chen, F. 1999. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21:601-604.   DOI   ScienceOn
53 Boussiba, S., Fan, L. & Vonshak, A. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol. 213:386-391.   DOI
54 Boussiba, S. & Vonshak, A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32:1077-1082.
55 Brinda, B. R., Sarada, R., Kamath, B. S., & Ravishankar, G. A. 2004. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis - cultural and regulatory aspects. Curr. Sci. (Bangalore) 87:1290-1294.
56 Bubrick, P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38:237-239.   DOI   ScienceOn
57 Carol, P., Stevenson, D., Bisanz, C., Breitenbach, J., Sandmann, G., Mache, R., Coupland, G. & Kuntz, M. 1999. Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57-68.   DOI
58 Carvalho, A. P., Meireles, L. A. & Malcata, F. X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22:1490-1506.   DOI
59 Vechtel, B., Kahmann, U. & Ruppel, H. G. 1992. Secondary carotenoids of Eremosphaera viridis De Bary (Chlorophyceae) under nitrogen deficiency. Bot. Acta 105:219-222.   DOI
60 Vanlerberghe, G. C. & McIntosh, L. 1996. Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol. 111:589-595.   DOI
61 Vershinin, A. 1999. Biological functions of carotenoids: diversity and evolution. Biofactors 10:99-104.   DOI
62 Vidhyavathi, R., Venkatachalam, L., Sarada, R. & Ravishankar, G. A. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59:1409-1418.   DOI   ScienceOn
63 Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2003. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124.   DOI   ScienceOn
64 Wang, C. W., Oh, M. K. & Liao, J. C. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62:235-241.   DOI   ScienceOn
65 Wang, J., Han, D., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25:253-260.   DOI
66 Wang, J., Sommerfeld, M. & Hu, Q. 2009. Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191-203.   DOI
67 Wang, J., Sommerfeld, M. & Hu, Q. 2011. Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J. Appl. Phycol. 23:995-1003.   DOI
68 Chen, G. 2007. Lipid and fatty acid composition and their biosyntheses in relation to carotenoid accumulation in the microalgae Nitzschia laevis (Bacillariophyceae) and Haematococcus pluvialis (Chlorophyceae). Ph.D. dissertation, The University of Hong Kong, Hong Kong, 150 pp.
69 Chandok, M. R., Sopory, S. K. & Oelmuller, R. 2001. Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids: evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol. Gen. Genet. 264:819-826.   DOI
70 Chen, F., Chen, H. & Gong, X. 1997. Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour. Technol. 62:19-24.   DOI   ScienceOn
71 Chen, Y. -B., Durnford, D. G., Koblizek, M. & Falkowski, P. G. 2004. Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta. Plant Physiol. 136:3737-3750.   DOI   ScienceOn
72 Aflalo, C., Meshulam, Y., Zarka, A. & Boussiba, S. 2007. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98:300-305.   DOI   ScienceOn
73 Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396.   DOI   ScienceOn
74 Wang, Y. & Chen, T. 2008. The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World J. Microbiol. Biotechnol. 24:2927-2932.   DOI
75 Wang, S. B., Chen, F., Sommerfeld, M. & Hu, Q. 2004a. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17-29.   DOI   ScienceOn
76 Wang, S. B., Chen, F., Sommerfeld, M. & Hu, Q. 2005. Isolation and proteomic analysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5:4839-4851.   DOI   ScienceOn
77 Wang, S. B., Hu, Q., Sommerfeld, M. & Chen, F. 2004b. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692-708.   DOI   ScienceOn
78 Wu, D. Y., Wright, D. A., Wetzel, C., Voytas, D. F. & Rodermel, S. 1999. The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43-55.   DOI
79 Sarada, R., Bhattacharya, S., Bhattacharya, S. & Ravishankar, G. A. 2002. A response surface approach for the production of natural pigment astaxanthin from green alga, Haematococcus pluvialis: effect of sodium acetate, culture age, and sodium chloride. Food Biotechnol. 16:107-120.   DOI   ScienceOn
80 Sarada, R., Vidhyavathi, R., Usha, D. & Ravishankar, G. A. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54:7585-7588.   DOI   ScienceOn
81 Schoefs, B., Rmiki, N., Rachadi, J. & Lemoine, Y. 2001. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett. 500:125-128.   DOI   ScienceOn
82 Sun, N., Wang, Y., Li, Y. -T., Huang, J. -C. & Chen, F. 2008. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem. 43:1288-1292.   DOI   ScienceOn
83 Steinbrenner, J. & Linden, H. 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol. 125:810-817.   DOI   ScienceOn
84 Steinbrenner, J. & Linden, H. 2003. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol. Biol. 52:343-356.   DOI   ScienceOn
85 Steinbrenner, J. & Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72:7477-7484.   DOI   ScienceOn
86 Sun, Z., Cunningham, F. X. & Gantt, E. 1998. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc. Natl. Acad. Sci. U. S. A. 95:11482-11488.   DOI   ScienceOn
87 Takeda, H. 1991. Sugar composition of the cell-wall and the taxonomy of Chlorella (Chlorophyceae). J. Phycol. 27:224-232.   DOI   ScienceOn
88 Tan, S., Cunningham, F. X., Youmans, M., Grabowski, B., Sun, Z. & Gantt, E. 1995. Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. J. Phycol. 31:897-905.   DOI
89 Tjahjono, A. E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N. & Nagai, S. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol. Lett. 16:133-138.   DOI   ScienceOn
90 Tran, D., Haven, J., Qiu, W. -G. & Polle, J. E. W. 2009a. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723-729.   DOI
91 Tran, N. -P., Park, J. -K. & Lee, C. -G. 2009b. Proteomics analysis of proteins in green alga Haematococcus lacustris (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb. Technol. 45:241-246.   DOI   ScienceOn
92 Ma, R. Y. -N. & Chen, F. 2001. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem. 36:1175-1179.   DOI   ScienceOn
93 Mann, V., Harker, M., Pecker, I. & Hirschberg, J. 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18:888-892.   DOI   ScienceOn
94 Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J. & Morais, R. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J. Appl. Phycol. 13:19-24.   DOI   ScienceOn
95 Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63:141-146.   DOI
96 Misawa, N. 2009. Pathway engineering of plants toward astaxanthin production. Plant Biotechnol. 26:93-99.   DOI   ScienceOn
97 Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.   DOI   ScienceOn
98 Nobre, B., Marcelo, F., Passos, R., Beirao, L., Palavra, A., Gouveia, L. & Mendes, R. 2006. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 223:787-790.   DOI
99 Ohlrogge, J. B. & Jaworski, J. G. 1997. Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:109-136.   DOI
100 Nott, A., Jung, H. S., Koussevitzky, S. & Chory, J. 2006. Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57:739-759   DOI   ScienceOn
101 Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J. Appl. Phycol. 12:499-506.   DOI   ScienceOn
102 Orosa, M., Torres, E., Fidalgo, P. & Abalde, J. 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12:553-556.   DOI   ScienceOn
103 Qin, S., Liu, G. -X. & Hu, Z. -Y. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem. 43:795-802.   DOI   ScienceOn
104 Qiu, B. S. & Li, Y. 2006. Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117-126.   DOI   ScienceOn
105 Remias, D., Karsten, U., Lutz, C. & Leya, T. 2010. Physiological and morphological processes in the alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73-86.   DOI
106 Remias, D., Lutz-Meindl, U. & Lutz, C. 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40:259-268.   DOI   ScienceOn
107 Rise, M., Cohen, E., Vishkautsan, M., Cojocaru, M., Gottlieb, H. E. & Arad, S. M. 1994. Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol. 144:287-292.   DOI
108 Santos, M. F. & Mesquita, J. F. 1984. Ultrastructure study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales) I. Some aspects of carotenogenesis. Cytologia 49:215-228.   DOI
109 Li, Y., Huang, J., Sandmann, G. & Chen, F. 2008a. Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735-743.   DOI
110 Li, Y. 2007. The role of carotenogenesis in the response of the green alga Haematococcus pluvialis to oxidative stress. Ph.D. dissertation, The University of Hong Kong, Hong Kong, 157 pp.
111 Li, Y., Huang, J., Sandmann, G. & Chen, F. 2009. High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J. Phycol. 45:635-641.   DOI   ScienceOn
112 Li, Y., Sommerfeld, M., Chen, F. & Hu, Q. 2008b. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant Physiol. 165:1783-1797.   DOI   ScienceOn
113 Li, Y., Sommerfeld, M., Chen, F. & Hu, Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22:253-263.   DOI   ScienceOn
114 Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47-65.   DOI   ScienceOn
115 Lichtenthaler, H. K., Rohmer, M. & Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101:643-652.   DOI   ScienceOn
116 Linden, H. 1999. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim. Biophys. Acta 1446:203-212.   DOI   ScienceOn
117 Liu, B. -H. & Lee, Y. -K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 12:301-307.   DOI   ScienceOn
118 Liu, J., Sun, Z., Zhong, Y. J., Huang, J., Hu, Q. & Chen, F. 2012. Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236:1665-1676.   DOI   ScienceOn
119 Liu, J., Huang, J. & Chen, F. 2009. Metabolic engineering of Chlorella zofingiensis (Chlorophyta) for enhanced biosynthesis of astaxanthin. FEBS J. 276:S283.
120 Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y. & Chen, F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour. Technol. 102:106-110.   DOI   ScienceOn
121 Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167.   DOI   ScienceOn
122 Lotan, T. & Hirschberg, J. 1995. Cloning and expression in Escherichia coli of the gene encoding ${\beta}$-C-4-oxygenase, that converts ${\beta}$-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364:125-128.   DOI   ScienceOn
123 Kajiwara, S., Kakizono, T., Saito, T., Kondo, K., Ohtani, T., Nishio, N., Nagai, S. & Misawa, N. 1995. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol. Biol. 29:343-352.   DOI   ScienceOn
124 Kang, C. D., Lee, J. S., Park, T. H. & Sim, S. J. 2005. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 68:237-241.   DOI   ScienceOn
125 Kathiresan, S., Chandrashekar, A., Ravishankar, G. A. & Sarada, R. 2009. Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J. Phycol. 45:642-649.   DOI   ScienceOn
126 Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N. & Nagai, S. 1992. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferment. Bioeng. 74:17-20.   DOI   ScienceOn
127 Kim, D. -K., Hong, S. -J., Bae, J. -H., Yim, N., Jin, E. S. & Lee, C. -G. 2011. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioprocess Eng. 16:698-705.   DOI   ScienceOn
128 Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microb. 59:867-873.
129 Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S., Kurimura, Y. & Tsuji, Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48:351-356.   DOI   ScienceOn
130 Kobayashi, M. & Sakamoto, Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21:265-269.   DOI   ScienceOn
131 Krichnavaruk, S., Shotipruk, A., Goto, M. & Pavasant, P. 2008. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as cosolvent. Bioresour. Technol. 99:5556-5560.   DOI   ScienceOn
132 Lang, N. J. 1968. Electron microscopic studies of extraplastidic astaxanthin in Haematococcus. J. Phycol. 4:12-19.   DOI
133 Lee, Y. -K. & Ding, S. -Y. 1994. Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 30:445-449.   DOI   ScienceOn
134 Lemoine, Y. & Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth. Res. 106:155-177.   DOI   ScienceOn
135 Hu, Q., Sommerfeld, M. & Lu, F. 2006. Extractability and bioavailability of the natural antioxidant astaxanthin from a green alga, Haematococcus pluvialis. WIPO Patent No. 2006107736.
136 Leya, T., Rahn, A., Lutz, C. & Remias, D. 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67:432-443.   DOI   ScienceOn
137 Li, J., Zhu, D., Niu, J., Shen, S. & Wang, G. 2011. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 29:568-574.   DOI   ScienceOn
138 Houille-Vernes, L., Rappaport, F., Wollman, F. A., Alric, J. & Johnson, X. 2011. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 108:20820-20825.   DOI
139 Hu, Z., Li, Y., Sommerfeld, M. & Hu, Q. 2008. Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur. J. Phycol. 43:365-376.   DOI   ScienceOn
140 Huang, J. C., Chen, F. & Sandmann, G. 2006a. Stress-related differential expression of multiple ${\beta}$-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J. Biotechnol. 122:176-185.   DOI   ScienceOn
141 Huang, J., Liu, J., Li, Y. & Chen, F. 2008. Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J. Phycol. 44:684-690.   DOI   ScienceOn
142 Huang, J. C., Wang, Y., Sandmann, G. & Chen, F. 2006b. Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 71:473-479.   DOI
143 Ip, P. -F. & Chen, F. 2005b. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40:733-738.   DOI   ScienceOn
144 Huang, J. C., Zhong, Y. J., Sandmann, G., Liu, J. & Chen, F. 2012. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691-699.   DOI   ScienceOn
145 Huss, V. A. R., Frank, C., Hartmann, E. C., Hirmer, M., Kloboucek, A., Seidel, B. M., Wenzeler, P. & Kessler, E. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35:587-598.   DOI
146 Ip, P. -F. & Chen, F. 2005a. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem. 40:3491-3496.   DOI   ScienceOn
147 Ip, P. -F., Wong, K. -H. & Chen, F. 2004. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 39:1761-1766.   DOI   ScienceOn
148 Jayaraj, J., Devlin, R. & Punja, Z. 2008. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res. 17:489-501.   DOI   ScienceOn
149 Johnson, E. A. & An, G. -H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297-326.   DOI
150 Johnson, E. A. & Schroeder, W. A. 1996. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53:119-178.
151 Kajiwara, S., Fraser, P. D., Kondo, K. & Misawa, N. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324:421-426.   DOI
152 Gutman, J., Zarka, A. & Boussiba, S. 2011. Evidence for the involvement of surface carbohydrates in the recognition of Haematococcus pluvialis by the parasitic blastoclad Paraphysoderma sedebokerensis. Fungal Biol. 115:803-811.   DOI   ScienceOn