Browse > Article
http://dx.doi.org/10.4014/jmb.1801.01014

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater  

Kim, Byung-Hyuk (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Choi, Jong-Eun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Cho, Kichul (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kang, Zion (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ramanan, Rishiram (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Moon, Doo-Gyung (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Kim, Hee-Sik (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.4, 2018 , pp. 630-637 More about this Journal
Abstract
The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.
Keywords
Biomass; mass cultivation; microalgae; microalgal cultivation parameter; high rate algal ponds (HRAP);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim B-H, Kang Z, Ramanan R, Choi J-E, Cho D-H, Oh H-M, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132.   DOI
2 Weis JJ, Madrigal DS, Cardinale BJ. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS One 3: e2825.   DOI
3 Craggs R, Sutherland D, Campbell H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 24: 329-337.   DOI
4 Benemann JR. 2003. Biofixation of $CO_2$ and greenhouse gas abatement with microalgae - technology roadmap. Final Report No. 7010000926. US Department of Energy, National Energy Technology Laboratory.
5 Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A. 2013. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem. Eng. J. 217: 231-239.   DOI
6 Gudin C, Thepenier C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6: 73-110.
7 Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2: 012701.   DOI
8 Azov Y, Shelef G. 1982. Operation of high-rate oxidation ponds: theory and experiments. Water Res. 16: 1153-1160.   DOI
9 Rawat I, Ranjith Kumar R, Mutanda T, Bux F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88: 3411-3424.   DOI
10 Grobbelaar JU. 2010. Microalgal biomass production: challenges and realities. Photosynth. Res. 106: 135-144.   DOI
11 Larsdotter K. 2006. Wastewater treatment with microalgae - a literature review. Vatten 62: 31-38.
12 Ketheesan B, Nirmalakhandan N. 2012. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol. 108: 196-202.   DOI
13 Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201.   DOI
14 Kang Z, Kim B-H, Ramanan R, Choi J-E, Yang J-W, Oh H-M, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118.   DOI
15 Kim B-H, Kim D-H, Choi J-W, Kang Z, Cho D-H, Kim J-Y, et al. 2015. Polypropylene bundle attached multilayered Stigeoclonium biofilms cultivated in untreated sewage generate high biomass and lipid productivity. J. Microbiol. Biotechnol. 25: 1547-1554.   DOI
16 Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.   DOI
17 Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, et al. 2013. Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl. Energy 102: 101-111.   DOI
18 Liffman K, Paterson DA, Liovic P, Bandopadhayay P. 2013. Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chem. Eng. Res. Des. 91: 221-226.   DOI
19 Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Banks C, et al. 2013. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54: 267-275.   DOI
20 Sompech K, Chisti Y, Srinophakun T. 2012. Design of raceway ponds for producing microalgae. Biofuels 3: 387-397.   DOI
21 Grobbelaar JU. 2013. Mass Production of Microalgae at Optimal Photosynthetic Rates. INTECHOPEN, Rijeka, Croatia
22 Atta M, Idris A, Bukhari A, Wahidin S. 2013. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 148: 373-378.   DOI
23 Wahidin S, Idris A, Shaleh SRM. 129. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129: 7-11.   DOI
24 Dodd J. 1986. Elements of Pond Design and Construction, pp. 265-283. CRC, Boca Raton.
25 APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.
26 Jeffrey St, Humphrey G. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191194.
27 Smith VH, Sturm BSM, deNoyelles FJ, Billings SA. 2010. The ecology of algal biodiesel production. Trends Ecol. Evol. 25: 301-309.   DOI
28 Kroon BMA, Keyelaars HAM, Fallowfield HJ, Mur LR. 1989. Modelling high rate algal pond productivity using wavelength dependent optical properties. J. Appl. Phycol. 1: 247-256.   DOI
29 Grobbelaar JU. 2012. Microalgal mass culture: the constraints of scaling-up. J. Appl. Phycol. 24: 315-318.   DOI
30 Park JBK, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102: 35-42.   DOI
31 Borowitzka MA. 2005. Culturing Microalgae in Outdoor Ponds. Elsevier Academic, London, UK.
32 Borowitzka MA, Moheimani NR. 2013. Open Pond Culture Systems. Springer, New York.
33 Grobbelaar JU, Soeder CJ, Stengel E. 1990. Modelling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21: 297-314.   DOI
34 Moheimani NR, Borowitzka MA. 2007. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol. Bioeng. 96: 27-36.   DOI
35 James SC, Boriah V. 2010. Modeling algae growth in an open-channel raceway. J. Comput. Biol. 17: 895-906.   DOI