Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.5.443

Flocculation Characteristics of Microalgae Through Combined Flocculants  

Kwon, Do-Yeon (Department of Chemical and Biomolecular Engineering, Sogang University)
Jung, Chang-Kyou (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Choul-Gyun (Department of Biological Engineering, Inha University)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
KSBB Journal / v.26, no.5, 2011 , pp. 443-452 More about this Journal
Abstract
In this study, inorganic flocculant with biodegradable polymer flocculant was usedfor microalgae harvest. The aim of this study was to optimize the concentration of inorganic flocculant, the concentration of biodegradable polymer flocculant and reaction volume for decreasing the amounts of flocculant and obtaining the suitable pH range for seawater by response surface methodology. The flocculation of three marine microalgae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, using inorganic flocculants and biodegradable polymer flocculants was investigated. The results indicated that the optimal flocculant quantity showed 0.1 g/L of ferric chloride, 7.5 g/L of chitosan on Chlorella ellipsoidea. In the case of Dunaliella bardawil, the optimal flocculant quantity showed amount of ferric sulfate more than 0.12 g/L and chitosan more than 0.75 g/L. In the case of Dunaliella tertiolecta, the optimal flocculant quantity showed 1.0 g/L of sodium aluminate, 0.75 g/L of chitosan.
Keywords
microalgae; harvest; Chlorella; Dunaliella; flocculation; response surface methodology (RSM);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brennan, L. and P. Owende (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577.   DOI   ScienceOn
2 Sharif Hossain, A. B. M. and A. Salleh (2008) Biodiesel Fuel Production from Algae as Renewable Energy. Am. J. Biochem. Biotech. 4: 250-254.   DOI
3 Szklo, A. and R. Schaeffer (2006) Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522.   DOI   ScienceOn
4 Junginger, M., T. $Bolkesj{\phi}$, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, B. Hektor, $\phi$. Leistad, E. Ling, M. Perry, E. Piacente, Frank, R. C., Y. Ryckmans, P. P. Schouwenberg, B. Solberg, E. $Tr{\phi}mborg$, A. da S. Walter, and M. de Wit (2008) Developments in international bioenergy trade. Biomass Bioenerg. 32: 717-729.   DOI   ScienceOn
5 Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M. Danquah, and G. Forde (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg. 35: 741-747.   DOI   ScienceOn
6 Li, Y., M. Horsman, N. Wu, C. Q. Lan, and Nathalie D. C. (2008) Biofuels from Microalgae. Biotechnol. Prog. 24: 815-820.
7 Chisti Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn
8 Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R. Rengasamy (2008) A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88.   DOI   ScienceOn
9 Lee, A. K., D. M. Lewis, and P. J. Ashman (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Phycol. 21: 559-567.   DOI   ScienceOn
10 Dismukes, C. G., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240.   DOI   ScienceOn
11 Somasundaran, P. and T. Hubbard (2006) Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
12 Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley (2010) Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energ. 2, 012701.   DOI
13 Kwon, D. Y., C. K. Jung, K. B. Park, C. G. Lee, and J. W. Lee (2011) Flocculation characteristics of microalgae using chemical flocculants. Korean J. Biotechnol. Bioeng. 26: 143-150.
14 Divakaran, R. and V. N. Sivasankara Pillai (2002) Flocculation of algae using chitosan. J. Appl. Phycol. 14: 479-422.
15 Kurane, R. and H. Matsuyama (1994) Production of a bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58: 1589-1594.   DOI   ScienceOn
16 Patil, S. V., C. D. Patil, B. K. Salunke, R. B. salunkhe, G. A. Bathe, and D. M. Patil (2011) Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment. Appl. Biochem. Biotechnol. 163: 463-472.   DOI   ScienceOn
17 Salehizadeh, H. and S. A. Shojaosadati (2002) Isolation and characterization of a bioflocculant produced by Bacillus firmus. Biotechnol. Lett. 24: 35-40.   DOI   ScienceOn
18 Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert (2010) Floccualtion of microalgae using cationic starch. J. Appl. Phycol. 22: 525-530.   DOI   ScienceOn
19 Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-1234.   DOI   ScienceOn
20 Golueke, C. G. and W. J. Oswald (1965) Harvesting and processing sewage-grown planktonic algae. J. Water Pollut. Contr. 37: 471-498.
21 Lubián L. M. (1989) Concentrating cultured marine microalgae with chitosan. Aquacul. Engineer. 8: 257-265.   DOI   ScienceOn
22 Morales, J., J. de la Noüe, and G. Picard (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacul. Engineer. 4: 257-270.   DOI   ScienceOn
23 Gualtieri, P., L. Barsanti, and V. Passarelli (1988) Chitosan as flocculant for concentrating Euglena gracilis cultures. Ann. Inst. Pasteur. Microbiol. 139: 717-726.   DOI
24 Lertsutthiwong, P., S. Sutti, and S. Powtongsook (2009) Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds. Aquacul. Engineer. 41: 188-193.   DOI   ScienceOn
25 Grima, E. M., E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491-515.   DOI   ScienceOn