DOI QR코드

DOI QR Code

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes

전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Na, Dong-Chae (Department of Civil Engineering, The University of Suwon) ;
  • Choi, Jae-Min (Department of Civil Engineering, The University of Suwon) ;
  • Kang, Doo-Sun (Department of Civil Engineering, The University of Suwon)
  • Published : 2012.09.30

Abstract

The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

부영양화로 인한 조류의 과도한 번식은 하천과 호수의 수질에 심각한 문제를 야기하고 있다. 따라서 하천과 호수의 수질 오염 방지를 위해서는 물리화학적 또는 생물학적 처리를 통해 효과적인 조류 제거가 필요하다. 본 연구에서는 전기부상과 혐기성 수소 발효 공정의 연계를 통해 효과적인 조류 제거와 에너지를 생산하고자 하였다. Chlorophyll a를 기준으로 전기부상에 의한 조류 제거효율은 전류 증가에 따라 증가하였으며 최대 95.9%로 나타났다. 제거된 조류로부터 에너지를 회수하기 위하여 혐기성 수소 발효 타당성을 조사하였다. 조류와 초음파로 전처리를 수행한 조류의 최종 수소 수율은 각각 17.3및 61.1ml $H_2/g$ dcw(dry cell weight)로 나타났다. 조류의 초음파 전처리는 가수분해 속도를 증가시켜 최대 수소 수율을 3.4배 향상시키는 것으로 나타났다.

Keywords

References

  1. Shanshan, G., Maoan, D., Jiayu, T., Jianyu, Y., Jixian, Y., Fang, M. and Jung, N., "Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal", Journal of Hazardous Materials, 182, pp. 827-834. (2010). https://doi.org/10.1016/j.jhazmat.2010.06.114
  2. 공석기, 안승구, "호기성 고율 안정조에서 빛의 조사 기간과 pH가 조류의 영야물질 제거에 미치는 영향", 한국환경과학회지 6(2), pp. 141-152. (1997).
  3. 임재림, 김성수, 이경혁, 이성열, 전화조, 정선영, "한강수계에서 조류발생과 맛․냄새발생과의 상관관계," 대한환경공학회 춘계학술연구발표회집, pp. 248-251. (2006).
  4. 박세진, 차일권, 윤태일, "정수처리공정에서 조류유래 유기물질의 제거," 대한환경공학회지, 27(1), pp. 377-384. (2005).
  5. 임영성, 송원섭, 조수식, 이홍재, 허종수, "정수처리과정 중 응집 및 여과에 미치는 조류의 영향," 한국환경농학회지, 19(1), pp. 13-19. (2000).
  6. Hoehn, R. C., Barnes, D. B., Thompso, C. W., Randall, Gizzard, T. J. and Shaffer, P., "Algae as sources of trihalomethane precursors," J. AWWA, 6, pp. 344-350. (1980).
  7. 이지형, 김미화, 김동윤, "배.급수관망에서 HPC와 Coliform을 중심으로 한 미생물 재성장고찰", 대한환경공학회, 23(2), pp. 261-267. (2001).
  8. 김진희, 조영관, 정진, 이정전, "천연물질과 황산동을 이용한 Microcystis와 Peridinium의 조류 제거효율에 관한 연구", 한국물환경학회.대한상하수도학회 공동춘계학술발표회 논문집, pp. 73-76. (2001).
  9. 심주현, 서형준, 권병대, "초음파에 의한 조류제거 방법 연구", 대한환경공학회 2006 춘계학술연구발표회 논문집, pp. 1026-1030. (2006).
  10. 이채복, 나영호, 이한용, 엄환섭, 김상식, "물속 방전을 위한 호소의 조류 제거 연구", 대한환경공학회 2006 추계학술연구발표회 논문집, pp. 1834-1836. (2006).
  11. Kim, D. H., Kim, S. H., Jung, K. W., Kim, M. S. and Shin, H. S., "Effect of initial pH independent of operational pH on hydrogen fermentation of food waste", Bioresource Technology, 102(18), pp. 8646-8652. (2011). https://doi.org/10.1016/j.biortech.2011.03.030
  12. 박상민, 권오상, 김근수, 이수진, 정원화, 박주현, 허유정, 박수정, 김은석, "미세조류를 이용한 하수고도처리 및 지질추출", 대한물환경학회.대한상하수도학회 2012년 공동 학술발표회 논문집, pp. 87-88. (2012).
  13. Chou, C. H., Wang, C. W., Huang, C. C. and Lay, J. J., "Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen", International Journal of Hydrogen Energy, 33(5), pp. 1550-1558. (2008). https://doi.org/10.1016/j.ijhydene.2007.09.031
  14. Pan, J., Zhang, R., El-Mashad, H. M., Sun, H. and Ying, Y., "Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation", International Journal of Hydrogen Energy, 33(23), pp. 6968-6978. (2008). https://doi.org/10.1016/j.ijhydene.2008.07.130
  15. Hoiczyk, E., Hansel, A., "Cyanobacterial cell walls: News from an unusual Prokaryotic enveolpe", Journal of Bacteriology, 182(5), pp. 1191-1199. (2000). https://doi.org/10.1128/JB.182.5.1191-1199.2000
  16. Kotopoulis, S., Schommartz, A. and Postema, M., "Sonic cracking of blue-green algae", Applied Acoustics, 79(10), pp. 1306-1312. (2009).
  17. Elliott, A. and Mahmood, T., "Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues", Water Research, 41(19), pp. 4273-4286. (2007). https://doi.org/10.1016/j.watres.2007.06.017
  18. APHA-AWWA-WEF, "Standard Methods for the Examination of Water and Wastewater", 18th edition, Am. Public Health Assoc., Washington, D. C., USA (1992).
  19. 동화기술편집부, "수질오염.폐기물.토양오염 공정시험방법", 도서출판 동화기술, pp.256. (1992).
  20. Yun, Y. M., Jung, K. W., KIM, D. H., Oh, Y. K. and Shin, H. S., "Microalgal biomass as a feedstock for bio-hydrogen production", International Journal of Hydrogen Energy, 37, pp. 15533-15539. (2012). https://doi.org/10.1016/j.ijhydene.2012.02.017
  21. Yan, Q., Zhao, M., Miao, H., Ruan, W. and Song, R., "Coupling of the hydrogen and polyhydroxyalkanoates(PHA) production through anaerobic digestion from Taihu blue algae", Bioresource Technology, 101, pp. 4508-4512. (2010). https://doi.org/10.1016/j.biortech.2010.01.073
  22. Jung, K. W., Kim, D. H. and Shin, H. S., "Fermentative hydrogen production form Laminaria japonica and optimization of thermal pretreatment conditions", Bioresource Technology, 102, pp. 2745-2750. (2011). https://doi.org/10.1016/j.biortech.2010.11.042