Browse > Article
http://dx.doi.org/10.14478/ace.2021.1076

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production  

Dang, Nhat Minh (VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University)
Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
Publication Information
Applied Chemistry for Engineering / v.32, no.5, 2021 , pp. 487-496 More about this Journal
Abstract
Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.
Keywords
Lipid-extracted algae (LEA); Bioenergy; Mixo/heterotrophic culture; Anaerobic digestion; Thermochemical conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Maurya, C. Paliwal, T. Ghosh, I. Pancha, K. Chokshi, M. Mitra, A. Ghosh, and S. Mishra, Applications of de-oiled microalgal biomass towards development of sustainable biorefinery, Bioresour. Technol., 214, 787-796 (2016).   DOI
2 M. M. R. Talukder, P. Das, and J. C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochem. Eng. J., 68, 109-113 (2012).   DOI
3 E. Jankowska, A. K. Sahu, and P. Oleskowicz-Popiel, Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renew. Sustain. Energy Rev., 75, 692-709 (2017).   DOI
4 A. Guldhe, S. Kumari, L. Ramanna, P. Ramsundar, P. Singh, I. Rawat, and F. Bux, Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation, J. Environ. Manag., 203, 299-315 (2017).   DOI
5 C. D. de Farias Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook, Process Biochem., 51, 1833-1842 (2016).   DOI
6 X. Wang, L. Sheng, and X. Yang, Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp., Bioresour. Technol., 229, 119-125 (2018).   DOI
7 R. Maurya, C. Paliwal, K. Chokshi, I. Pancha, T. Ghosh, G. G. Satpati, R. Pal, A. Ghosh, and S. Mishra, Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer, Bioresour. Technol., 207, 197-204 (2016).   DOI
8 R. Praveenkumar, B. Kim, E. Choi, K. Lee, J.-Y. Park, J.-S. Lee, Y.-C. Lee, and Y.-K. Oh, Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas, Bioresour. Technol., 171, 500-505 (2014).   DOI
9 N. Arora, A. Patel, P. A. Pruthi, and V. Pruthi, Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima, Appl. Biochem. Biotechnol., 180, 1534-1541 (2016).   DOI
10 M. T. Gao, T. Shimamura, N. Ishida, and H. Takahashi, Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel, J. Biosci. Bioeng., 114, 330-333 (2012).   DOI
11 E. P. Knoshaug, A. Mohagheghi, N. J. Nagle, and J. J. Stickel, Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate, Green Chem., 20, 457-468 (2018).   DOI
12 Z. Yang, R. Guo, X. Xu, X. Fan, and X. Li, Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment, Int. J. Hydrogen Energy, 35, 9618-9623 (2010).   DOI
13 H. H. Bui, K. Q. Tran, and W. H. Chen, Pyrolysis of microalgae residues-a Kinetic study, Bioresour. Technol., 199, 362-366 (2015).   DOI
14 Y. Tejido-Nunez, E. Aymerich, L. Sancho, and D. Refardt, Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency, Ecol. Eng., 136, 1-9 (2019).   DOI
15 I. Pancha, K. Chokshi, R. Maurya, S. Bhattacharya, P. Bachani, and S. Mishra, Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production, Bioresour. Technol., 204, 9-16 (2016).   DOI
16 M. Mirsiaghi, Bioconversion of Lipid-extracted Algal Biomass into Ethanol, PhD Dissertation, Colorado State University, USA (2016).
17 N. Rashid, M. S. U. Rehman, and J. I. Han, Recycling and reuse of spent microalgal biomass for sustainable biofuels, Biochem. Eng. J., 75, 101-107 (2013).   DOI
18 M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sustain. Energy Rev., 92, 394-404 (2018).   DOI
19 N. M. Dang and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 406-414 (2018).
20 L. Yang, X. Tan, B. Si, F. Zhao, H. Chu, X. Zhou, and Y. Zhang, Nutrients recycling and energy evaluation in a closed microalgal biofuel production system, Algal Res., 33, 399-405 (2018).   DOI
21 S. Gupta, S. Gupta, Mansha, and S. Sharma, Management of barren land soil using waste algal residue and agricultural residue, J. Algal Biomass Util. 3, 1-6 (2012).
22 K. Lee, G. Kim, and D. N. Minh, Life cycle assessment for biodiesel production through microalgae cultivation in marine floating culture system. Research Report, Development of Marine Microalgal Biofuel Production Technology (PJT20025), Ministry of Oceans and Fisheries, Korea (2019).
23 J. H. Park, J. Y. Jeong, D. Hee, and J. J. Dong, Anaerobic digestibility of algal bioethanol residue, Bioresour. Technol., 113, 78-82 (2012).   DOI
24 A. E.-F. Abomohra, H. Eladel, M. El-Esawi, S. Wang, Q. Wang, and D. Hanelt, Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production, Bioresour. Technol., 249, 992-999 (2018).   DOI
25 J. Lowrey, R. E. Armenta, and M. S. Brooks, Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid, Bioresour. Technol., 209, 333-342 (2016).   DOI
26 E. Barbera, E. Sforza, S. Kumar, T. Morosinotto, A. Bertucco, Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling, Bioresour. Technol., 207, 59-66 (2016).   DOI
27 E. Barbera, E. Sforza, V. Musolino, S. Kumar, and A. Bertucco, Nutrient recycling in large-scale microalgal production: Mass and energy analysis of two recovery strategies by process simulation, Chem. Eng. Res. Des., 132, 785-794 (2018).   DOI
28 H. Zheng, X. Ma, Z. Gao, Y. Wan, M. Min, W. Zhou, Y. Li, Y. Liu, H. Huang, P. Chen, and R. Ruan, Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses, Appl. Biochem. Biotechnol., 177 (3), 662-674 (2015).   DOI
29 A. F. Ferreira, L. A. Ribeiro, A. P. Batista, P. Marques, B. P. Nobre, A. Palavra, P. P. da Silva, L. Gouveia, and C. Silva, A biorefinery from Nannochloropsis sp. microalga-Energy and CO2 emission and economic analyses, Bioresour. Technol., 138, 235-244 (2013).   DOI
30 J. C. Quinn, A. Hanif, S. Sharvelle, and T. H. Bradley, Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae, Bioresour. Technol., 171, 37-43 (2014).   DOI
31 J. A. Posada, L. B. Brentner, A. Ramirez, and M. K. Patel, Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res., 17, 113-131 (2016).   DOI
32 X. Ji, B. Liu, G. Chen, and W. Ma, The pyrolysis of lipid-extracted residue of Tribonema minus in a fixed-bed reactor, J. Anal. Appl. Pyrolysis, 116, 231-236 (2015).   DOI
33 S. Mishra and K. Mohanty, Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach, Bioresour. Technol., 273, 177-184 (2019).   DOI
34 A. Ghimire, G. Kumar, P. Sivagurunathan, S. Shobana, G.D. Saratale, H.W. Kim, V. Luongo, G. Esposito, and R. Munoz, Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries, Bioresour. Technol., 241, 525-536 (2017).   DOI
35 D.-H. KIm, S. Kang, and Y.-M. Yun, Changes in microbial community associated with dechlorination of leftover chloroform in two-stage anaerobic Co-fermentation (H2+CH4) of lipid extracted microalgae waste with food waste leachate, Int. J. Hydrogen Energy, 44, 2266-2273 (2019).   DOI
36 B. Zhang and K. Ogden, Nitrogen balances and impacts on the algae cultivation-extraction-digestion-cultivation process, Algal Res. 39, 101434 (2019).   DOI
37 J. M. Juarez, E. R. Pastor, J. M. F. Sevilla, R. M. Torre, P. A. Garcia-Encina, and S .B. Rodriguez, Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants, Bioresour. Technol., 257, 30-38 (2018).   DOI
38 M. Collotta, P. Champagne, W. Mabee, G. Tomasoni, and M. Alberti, Life Cycle analysis of the production of biodiesel from microalgae. In: R. Basosi, M. Cellura, S. Longo, M. Parisi (eds), Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology, Springer, Cham. (2019).
39 G. Saranya and T. V. Ramachandra, Life cycle assessment of biodiesel from estuarine microalgae, Energy Convers. Manage.: X, 8, 100065 (2020).
40 F. Gentili, Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases, Bioresour. Technol., 169, 27-32 (2014).   DOI
41 H. L. Bryant, I. Gogichaishvili, D. Anderson, J. W. Richardson, J. Sawyer, T. Wickersham, and M. L. Drewery, The value of post-extracted algae residue. Algal Res., 1, 185-193 (2012).   DOI
42 K. L. Rothlisberger-Lewis, J. L. Foster, and F. M. Hons, Soil carbon and nitrogen dynamics as affected by lipid-extracted algae application, Geoderma, 262, 140-146 (2016).   DOI
43 E.A. Johnson, Z. Liu, E. Salmon, and P. Hatcher, One-step conversion of algal biomass to biodiesel with formation of an algal char as potential fertilizer. In: J. W. Lee (Ed.), Advanced Biofuels and Bioproducts, pp. 695-705, Springer, New York (2013).
44 C. Rosch, J. Skarka, and N. Wegerer, Materials flow modeling of nutrient recycling in biodiesel production from microalgae, Bioresour. Technol., 107, 191-199 (2012).   DOI
45 P. Bohutskyi, B. Ketter, S. Chow, K. J. Adams, M. J. Betenbaugh, F. T. Allnutt, and E. J. Bouwer, Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery, Bioresour. Technol., 183, 229-239 (2015).   DOI
46 W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015).   DOI
47 L. C. Fernandez-Linares, C. G. Barajas, E. D. Paramo, and J. Corona, Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol., 244, 400-406 (2017).   DOI
48 F. M. Santos and J. C. M. Pires, Nutrient recovery from waste-waters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018).   DOI
49 F. A. Ansari, A. Shriwastav, S. K. Gupta, I. Rawat, A. Guldhe, and F. Bux, Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery, Bioresour. Technol., 179, 559-564 (2015).   DOI
50 R. Maurya, K. Chokshi, T. Ghosh, K. Trivedi, I. Pancha, D. Kubavat, S. Mishra, and A. Ghosh, Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L, Front. Plant Sci., 6, 1266 (2016).
51 M. Grzesik, Z. Romanowska-Duda, and H. M. Kalaji, Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application, Photosynthetica, 55, 510-521 (2017).   DOI
52 H. Zheng, H., Z. Gao, F. Yin, X. Ji, and H. Huang, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol., 126, 24-30 (2012).   DOI
53 K. Azizi, M. K. Moraveji, and H. A. Najafabadi, A review on bio-fuel production from microalgal biomass by using pyrolysis method, Renew. Sustain. Energy Rev., 82, 3046-3059 (2018).   DOI
54 N. M. Dang and K. Lee, Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production, Appl. Chem. Eng., 29, 1-9 (2018).   DOI
55 W. Farooq, W.and I. Suh, M.and S. Park, and J. W. Yang, Water use and its recycling in microalgae cultivation for biofuel application, Bioresour. Technol., 184, 73-81 (2015).   DOI
56 N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018).   DOI
57 H. Zheng, Z. Gao, F. Yin, X. Ji, and H. Huang, Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis, Bioresour. Technol,. 117, 1-6 (2012).   DOI
58 X. Ma, H. Zheng, H. Huang, Y. Liu, and R. Ruan, Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs), Appl. Biochem. Biotechnol., 174, 1631-1650 (2014).   DOI
59 L. M. Gonzalez-Gonzalez, D. F. Correa, S. Ryan, P. D. Jensen, S. Pratt, and P. M. Schenk, Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling, Renew. Sustain. Energy Rev., 82, 1137-1148 (2018).   DOI
60 S. M. Desjardins, C. A. Laamanen, N. Basiliko, and J. A. Scott, Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae, Environ. Rev., 28(3), 325-338 (2020).   DOI
61 C. Kavitha, V. Ashokkumar, S. Chinnasamy, S. Bhaskar, and R. Rengasamy, Pretreatment of lipid extracted Botryococcus braunii spent biomass for bioethanol production, Int. J. Curr. Biotechnol., 2, 11-18 (2014).
62 Y. M. Chang, W. T. Tsai, M. H. Li, Chemical characterization of char derived from slow pyrolysis of microalgal residue, J. Anal. Appl. Pyrolysis, 111, 88-93 (2015).   DOI
63 M. Moon, C. W. Kim, W. Farooq, W .I. Suh, A. Shrivastav, M. S. Park, S. K. Mishra, and J. W. Yang, Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp., Bioresour. Technol., 163, 180-185 (2014).   DOI
64 P. Jain, N. Arora, J. Mehtani, V. Pruthi, and C. B. Majumder, Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production, Bioresour. Technol., 242, 152-160 (2017).   DOI
65 O. K. Lee, A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee, Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta, Bioresour. Technol., 132, 197-201 (2013).   DOI
66 M. Mirsiaghi and K. F. Reardon, Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars, Algal Res., 8, 145-152 (2015).   DOI
67 Y. H. Seo, M. Sung, and J. I. Han, Recycle of algal residue suspension from acid-catalyzed hot-water extraction (AHE) as substrate of oleaginous yeast Cryptococcus sp., Fuel, 141, 222-225 (2015).   DOI
68 H.-H. Cheng, L.-M. Whang, K.-C. Chan, M.-C. Chung, S,-H. Wu, C.-P. Liu, S.-Y. Tien, S.-Y. Chen, J.-S. Chang, and W.-J. Lee, Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum, Bioresour. Technol., 184, 379-385 (2015).   DOI
69 M. E. Alzate, R. Munoz, F. Rogalla, F. Fdz-Polanco, and S. I. Perez-Elvira, Biochemical methane potential of microalgae biomass after lipid extraction, Chem. Eng., J. 243, 405-410 (2014).   DOI
70 L. Wang, L. Chen, S. Wu, and J. Ye, Non-airtight fermentation of sugar beet pulp with anaerobically digested dairy manure to provide acid-rich hydrolysate for mixotrophic microalgae cultivation, Bioresour. Technol., 278, 175-179 (2019).   DOI
71 J. Park, H. F. Jin, B. R. Lim, K. Y. Park, and K. Lee, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp., Bioresour. Technol., 101, 8649-8657 (2010).   DOI
72 M. Francavilla, P. Kamaterou, S. Intini, M. Monteleone, and A. Zabaniotou, Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue, Algal Res., 11, 184-193 (2015).   DOI
73 H. Gu, N. Nagle, P. T. Pienkos, and M. C. Posewitz, Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus, Bioresour. Technol., 184, 153-160 (2015).   DOI
74 K. Wang, R. C. Brown, S. Homsy, L. Martinez, and S. S. Sidhu, Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production, Bioresour. Technol., 127, 494- 499 (2013).   DOI
75 Y. M. Chang, W. T. Tsai, and M. H. Li, Characterization of activated carbon prepared from Chlorella-based algal residue, Bioresour. Technol., 184, 344-348 (2015).   DOI
76 D. Chiaramonti, M. Prussi, M. Buffi, A. M. Rizzo, and L. Pari, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185, 963-972 (2017).   DOI
77 V. Benavente, S. L. F. G. Gentili, and S. Jansson, Influence of lipid extraction and processing conditions on hydrothermal conversion of microalgae feedstocks-Effect on hydrochar composition, secondary char formation and phytotoxicity, Chem. Eng. J., 428, 129559 (2022).   DOI
78 A. Aslam, S. R. Thomas-Hall, T. A. Mughal, and P. M. Schenk, Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas, Bioresour. Technol., 233, 271-283 (2017).   DOI
79 P. Bohutskyi, S. Chow, B. Ketter, M. J. Betenbaugh, E. J. Bouwer, Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion, Appl. Energy 154, 718-731 (2015).   DOI
80 E. Sforza, E. Barbera, F. Girotto, R. Cossu, and A. Bertucco, Anaerobic digestion of lipid-extracted microalgae: Enhancing nutrient recovery towards a closed loop recycling, Biochem. Eng. J., 121, 138-146 (2017).