DOI QR코드

DOI QR Code

Harvesting of Oleaginous Microalgae Chlorella sp. by CaCO3 Mineralization

  • Kim, Dong Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Oh, You-Kwan (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)
  • Received : 2021.05.31
  • Accepted : 2021.07.01
  • Published : 2021.07.27

Abstract

The formation of CaCO3 in microalgal culture is investigated and applied for effective separation of microalgae. The presence of several cationic ions in the culture medium mediates the formation of 3 types of mineral precipitates depending on the concentration of mineral precursors, Ca2+ and CO32-, amorphous nano-flakes, rhombohedral calcites, and spherical vaterites. While amorphous phased precipitates are formed for all concentrations of mineral precursor, only calcites are formed for 30 mM solutions of mineral precursor, and mixtures of calcites and vaterites are formed for 50 and 100 mM solutions of mineral precursor. The harvesting efficiency is also dependent on the concentration of the mineral precursor: from 90 % for 10 mM to 99 % for 100 mM after 60 mins' of gravitational sedimentation. The formation of nano-flakes on the surface of microalgal cells induces the flocculation of microalgae by breaking the stable dispersion. The negatively charged surface of the microalgal cell is compatible not only with nano-flake attachment but also with the growth of calcitic crystals in which microalgal cells are embedded.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University. We thank to Ms. Eun Ji Choi for technical supports.

References

  1. Y. Chisti, Biotechnol. Adv., 25, 294 (2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  2. T. M. Mata, A. A. Martins and N. S. Caetano, Renew. Sustain. Energ. Rev., 14, 217 (2010). https://doi.org/10.1016/j.rser.2009.07.020
  3. M. K. Lam and K. T. Lee, Biotechnol. Adv., 30, 673 (2012). https://doi.org/10.1016/j.biotechadv.2011.11.008
  4. J. Milledge and S. Heaven, Rev. Environ. Sci. Biotechnol., 12, 165 (2013). https://doi.org/10.1007/s11157-012-9301-z
  5. R. Bosma, W. A. Van Spronsen, J. Tramper and R. H. Wijffels, J. Appl. Phycol., 15, 143 (2003). https://doi.org/10.1023/A:1023807011027
  6. S. S. Gao, J. X. Yang, J. Y. Tian, F. Ma, G. Tu and M. A. Du, J. Hazard. Mater., 177, 336 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.037
  7. J. Kim, B. G. Ryu, K. Kim, B. K. Kim, J. I. Han and J. W. Yang, Bioresour. Technol., 123, 164 (2012). https://doi.org/10.1016/j.biortech.2012.08.010
  8. X. Z. Zhang, Q. Hu, M. Sommerfeld, E. Puruhito and Y. S. Chen, Bioresour. Technol., 101, 5297 (2010). https://doi.org/10.1016/j.biortech.2010.02.007
  9. I. Udom, B. H. Zaribaf, T. Halfhide, B. Gillie, O. Dalrymple, Q. Zhang and S. J. Ergas, Bioresour. Technol., 139, 101 (2013). https://doi.org/10.1016/j.biortech.2013.04.002
  10. D. Vandamme, I. Foubert and K. Muylaert, Trends Biotechnol., 31, 233 (2013). https://doi.org/10.1016/j.tibtech.2012.12.005
  11. K. Lee, S. Y. Lee, J. G. Na, S. G. Jeon, R. Praveenkumar, D. M. Kim, W. S. Chang and Y. K. Oh, Bioresour. Technol., 149, 575 (2013). https://doi.org/10.1016/j.biortech.2013.09.074
  12. J. K. Lim, D. C. J. Chieh, S. A. Jalak, P. Y. Toh, N. H. M. Yasin, B. W. Ng and A. L. Ahmad, Small., 8, 1683 (2012). https://doi.org/10.1002/smll.201102400
  13. K. S. Lackner, C. H. Wendt, D. P. Butt, E. L. Joyce and D. H. Sharp, Energy, 20, 1153 (1995). https://doi.org/10.1016/0360-5442(95)00071-N
  14. R. Zevenhoven, S. Eloneva and S. Teir, Catal. Today, 115, 73 (2006). https://doi.org/10.1016/j.cattod.2006.02.020
  15. M. Dittrich and M. Obst, Ambio, 33, 559 (2004). https://doi.org/10.1579/0044-7447-33.8.559
  16. C. R. Heath, B. C. S. Leadbeater and M. E. Callow, J. Appl. Phycol., 7, 367 (1995). https://doi.org/10.1007/BF00003794
  17. G. Santomauro, J. Baier, W. Huang, S. Pezold and J. Bill, J. Biomater. and Nanobiotechnology, 3, 413 (2012). https://doi.org/10.4236/jbnb.2012.34041
  18. G. Falini, S. Albeck, S. Weiner and L. Addadi, Science, 271, 67 (1996). https://doi.org/10.1126/science.271.5245.67
  19. S. Mann, N. H. C. Sparks and R. G. Board, Adv. Microb. Physiol., 31, 125 (1990). https://doi.org/10.1016/S0065-2911(08)60121-6
  20. M. A. Borowitzka and A. W. D. Larkum, CRC Crit. Rev. Plant Sci., 6, 1 (1987). https://doi.org/10.1080/07352688709382246
  21. J. Y. Seo, R. Praveenkukmar, B. Kim, J. C. Seo, J. Y. Park, J. G. Na, S. G. Jeon, S. B. Park, K. Lee and Y. K. Oh, Green Chem., 18, 3981 (2016). https://doi.org/10.1039/C6GC00904B
  22. J. W. C. Dunlop, R. Weinkamer and P. Fratzl, Mater. Today, 14, 70 (2011). https://doi.org/10.1016/S1369-7021(11)70056-6
  23. F. C. Meldrum and H. Colfen, Chem. Rev., 108, 4332 (2008). https://doi.org/10.1021/cr8002856
  24. F. Nudelman, H. H. Chen, H. A. Goldberg, S. Weiner and L. Addadi, Faraday Discuss., 136, 9 (2007). https://doi.org/10.1039/b704418f
  25. Y. Y. Kim, K. Ganesan, P. Yang, A. N. Kulak, S. Borukhin, S. Pechook, L. Ribeiro, R. Kroger, S. J. Eichhorn, S. P. Armes, B. Pokroy and F. C. Meldrum, Nat. Mater., 10, 890 (2011). https://doi.org/10.1038/nmat3103
  26. K. Lee, S. Y. Lee, R. Praveenkukmar, B. Kim, J. Y. Seo, S. G. Jeon, J. G. Na, J. Y. Park, D. M. Kim and Y. K. Oh, Bioresour. Technol., 167, 284 (2014). https://doi.org/10.1016/j.biortech.2014.06.055
  27. K. Lee, J. G. Na, J. Y. Seo, T. S. Shim, B. Kim, R. Praveenkukmar, J. Y. Park, Y. K. Oh and S. G. Jeon, ACS Appl. Mater. Interfaces., 7, 18336 (2015). https://doi.org/10.1021/acsami.5b04098
  28. M. Kim, M. G. Choi, H. W. Ra, S. B. Park, Y.-J. Kim and K. Lee, Materials, 11, 296 (2018). https://doi.org/10.3390/ma11020296