• Title/Summary/Keyword: Meromorphic

Search Result 241, Processing Time 0.026 seconds

Meromorphic Functions Sharing a Nonzero Value with their Derivatives

  • Li, Xiao-Min;Ullah, Rahman;Piao, Da-Xiong;Yi, Hong-Xun
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.137-147
    • /
    • 2015
  • Let f be a transcendental meromorphic function of finite order in the plane such that $f^{(m)}$ has finitely many zeros for some positive integer $m{\geq}2$. Suppose that $f^{(k)}$ and f share a CM, where $k{\geq}1$ is a positive integer, $a{\neq}0$ is a finite complex value. Then f is an entire function such that $f^{(k)}-a=c(f-a)$, where $c{\neq}0$ is a nonzero constant. The results in this paper are concerning a conjecture of Bruck [5]. An example is provided to show that the results in this paper, in a sense, are the best possible.

On the Fekete-Szegö Problem for a Certain Class of Meromorphic Functions Using q-Derivative Operator

  • Aouf, Mohamed Kamal;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.307-318
    • /
    • 2018
  • In this paper, we obtain $Fekete-Szeg{\ddot{o}}$ inequalities for certain class of meromorphic functions f(z) for which $-{\frac{(1-{\frac{{\alpha}}{q}})qzD_qf(z)+{\alpha}qzD_q[zD_qf(z)]}{(1-{\frac{{\alpha}}{q}})f(z)+{\alpha}zD_qf(z)}{\prec}{\varphi}(z)$(${\alpha}{\in}{\mathbb{C}}{\backslash}(0,1]$, 0 < q < 1). Sharp bounds for the $Fekete-Szeg{\ddot{o}}$ functional ${\mid}{\alpha}_1-{\mu}{\alpha}^2_0{\mid}$ are obtained.

Further Results about the Normal Family of Meromorphic Functions and Shared Sets

  • Qi, Jianming;Zhang, Guowei;Zhou, Linlin
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.39-47
    • /
    • 2012
  • Let $\mathcal{F}$ be a family of meromorphic functions in a domain D, and let $k$, $n({\geq}2)$ be two positive integers, and let $S=\{a_1,a_2,{\ldots},a_n\}$, where $a_1$, $a_2$, ${\ldots}$, $a_n$ are distinct finite complex numbers. If for each $f{\in}\mathcal{F}$, all zeros of $f$ have multiplicity at least $k+1$, $f$ and $G(f)$ share the set $S$ in $D$, where $G(f)=P(f^{(k)})+H(f)$ is a differential polynomial of $f$, then$\mathcal{F}$ is normal in $D$.

A BASIS OF THE SPACE OF MEROMORPHIC QUADRATIC DIFFERENTIALS ON RIEMANN SURFACES

  • Keum, J.H.;Lee, M.K.
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.127-134
    • /
    • 1998
  • It is proved [6] that there exists a basis of $L^\Gamma$ (the space of meromorphic vector fields on a Riemann surface, holomorphic away from two fixed points) represented by the vector fields which have the expected zero or pole order at the two points. In this paper, we carry out the same task for the quadratic differentials. More precisely, we compute a basis of $Q^\Gamma$ (the sapce of meromorphic quadratic differentials on a Riemann surface, holomorphic away from two fixed points). This basis consists of the quadratic differentials which have the expected zero or pole order at the two points. Furthermore, we show that $Q^\Gamma$ has a Lie algebra structure which is induced from the Krichever-Novikov algebra $L^\Gamma$.

  • PDF

ZERO DISTRIBUTION OF SOME DELAY-DIFFERENTIAL POLYNOMIALS

  • Laine, Ilpo;Latreuch, Zinelaabidine
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1541-1565
    • /
    • 2020
  • Let f be a meromorphic function of finite order ρ with few poles in the sense Sλ(r, f) := O(rλ+ε) + S(r, f), where λ < ρ and ε ∈ (0, ρ - λ), and let g(f) := Σkj=1bj(z)f(kj)(z + cj) be a linear delay-differential polynomial of f with small meromorphic coefficients bj in the sense Sλ(r, f). The zero distribution of fn(g(f))s - b0 is considered in this paper, where b0 is a small function in the sense Sλ(r, f).

MEROMORPHIC FUNCTION PARTIALLY SHARES SMALL FUNCTIONS OR VALUES WITH ITS LINEAR c-SHIFT OPERATOR

  • Banerjee, Abhijit;Maity, Sayantan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1175-1192
    • /
    • 2021
  • In this paper, we have studied on the uniqueness problems of meromorphic functions with its linear c-shift operator in the light of partial sharing. Our two results improve and generalize two very recent results of Noulorvang-Pham [Bull. Korean Math. Soc. 57 (2020), no. 5, 1083-1094] in some sense. In addition, our other results have improved and generalized a series of results due to Lü-Lü [Comput. Methods Funct. Theo. 17 (2017), no. 3, 395-403], Zhen [J. Contemp. Math. Anal. 54 (2019), no. 5, 296-301] and Banerjee-Bhattacharyya [Adv. Differ. Equ. 509 (2019), 1-23]. We have exhibited a number of examples to show that some conditions used in our results are essential.

AREA DISTORTION UNDER MEROMORPHIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSION

  • Bhowmik, Bappaditya;Satpati, Goutam
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.439-455
    • /
    • 2019
  • Let ${\Sigma}_k(p)$ be the class of univalent meromorphic functions defined on the unit disc ${\mathbb{D}}$ with k-quasiconformal extension to the extended complex plane ${\hat{\mathbb{C}}}$, where $0{\leq}k<1$. Let ${\Sigma}^0_k(p)$ be the class of functions $f{\in}{\Sigma}_k(p)$ having expansion of the form $f(z)=1/(z-p)+{\sum_{n=1}^{\infty}}\;b_nz^n$ on ${\mathbb{D}}$. In this article, we obtain sharp area distortion and weighted area distortion inequalities for functions in ${\sum_{k}^{0}}(p)$. As a consequence of the obtained results, we present a sharp upper bound for the Hilbert transform of characteristic function of a Lebesgue measurable subset of ${\mathbb{D}}$.

MEROMORPHIC FUNCTIONS SHARING 1CM+1IM CONCERNING PERIODICITIES AND SHIFTS

  • Cai, Xiao-Hua;Chen, Jun-Fan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • The aim of this paper is to investigate the problems of meromorphic functions sharing values concerning periodicities and shifts. In this paper we prove the following result: Let f(z) and g(z) be two nonconstant entire functions, let $c{\in}{\mathbb{C}}{\setminus}\{0\}$, and let $a_1$, $a_2$ be two distinct finite complex numbers. Suppose that ${\mu}(f){\neq}1$, ${\rho}_2(f)<1$, and f(z) = f(z+c) for all $z{\in}{\mathbb{C}}$. If f(z) and g(z) share $a_1$ CM, $a_2$ IM, then $f(z){\equiv}g(z)$. Moreover, examples are given to show that all the conditions are necessary.

THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.795-814
    • /
    • 2021
  • In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: fn + P(f) = R(z)eα(z) and fn + P*(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where P(f) and P*(f) are differential polynomials in f of degree n - 1 with coefficients being small functions and rational functions respectively, R is a non-vanishing small function of f, α is a nonconstant entire function, p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant polynomials. Particularly, we consider the solutions of the second equation when p1, p2 are nonzero constants, and deg α1 = deg α2 = 1. Our results are improvements and complements of Liao ([9]), and Rong-Xu ([11]), etc., which partially answer a question proposed by Li ([7]).

A NOTE ON THE INTEGRAL REPRESENTATIONS OF GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE AND MEROMORPHIC FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.355-376
    • /
    • 2021
  • In this paper we wish to establish the integral representations of generalized relative order (𝛼, 𝛽) and generalized relative type (𝛼, 𝛽) of entire and meromorphic functions where 𝛼 and 𝛽 are continuous non-negative functions defined on (-∞, +∞). We also investigate their equivalence relation under some certain condition.