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AREA DISTORTION UNDER MEROMORPHIC MAPPINGS
WITH NONZERO POLE HAVING QUASICONFORMAL
EXTENSION

BAPPADITYA BHOWMIK AND GOUTAM SATPATI

ABSTRACT. Let Xk (p) be the class of univalent meromorphic functions de-
fined on the unit disc D with k-quasiconformal extension to the extended
complex plane @, where 0 < k < 1. Let Eg(p) be the class of functions
f € Zk(p) having expansion of the form f(z) =1/(z —p) + > oo bnz™
on D. In this article, we obtain sharp area distortion and weighted area
distortion inequalities for functions in E% (p). As a consequence of the ob-
tained results, we present a sharp upper bound for the Hilbert transform
of characteristic function of a Lebesgue measurable subset of D.

1. Introduction

Let C denote the complex plane and C be the extended complex plane
C U {o0}. Throughout the discussion in this article, we shall use the following
notations: D = {z : 2| < 1}, D = {2 : |2] < 1}, D* = {2 : |2 > 1},
D* = {z : |z| > 1}. Let ¥ be the class of univalent meromorphic functions
defined on D having simple pole at the origin with residue 1 and therefore each
f € X has the following expansion

(1.1) fz)=z2"1+ i bpz", zeD.
n=0

The class ¥ and its various subclasses have been studied by a number of func-
tion theorists till date. Let X(p) be the class of functions that are univalent,
meromorphic on D having a simple pole at z = p € [0,1) with residue 1 with
the following expansion

(1.2) f(z)= (z—p)_l—l—anz", zeD.
n=0
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440 B. BHOWMIK AND G. SATPATI

Let X%(p) := {f € X(p) : bp = 0}. We emphasise here that merely considering
the pole of a meromorphic function at a nonzero point not only changes the
normalization but provides us with the Taylor expansion of the same function

inside the disc {z : |z| < p} along with its other Laurent expansions. Now since
for f € ¥°%p), we have f(0) = —1/p and f'(0) = by — 1/p?, the function g

defined as f) 41/
? p
9(z) = 3 — g (p#0),

belongs to the class S(p), where S(p) is the class of meromorphic, univalent
functions defined on D, having a simple pole at z = p, with the normalization
f(0) =0 = f'(0) — 1. Thus there is a one-to-one correspondence between the
classes ¥.0(p) and S(p). It is clear that if f € S(p), then it will have a Taylor
series expansion as

o0
z)=z+ Zanz", |z| < p,
=2

about the origin. The class S(p) and its various subclasses have also been the
object of study for many mathematicians over the years (see [4,5,12,17,18] and
the references therein). It is well-known that the univalent functions defined
in D that admit a quasiconformal extension to the sphere C play an important
role in Teichmiiller space theory. It is therefore of interest to study such class
of functions.

Let i be the class of functions in ¥ that have k-quasiconformal extension
(0<k<1)to C. Here, a mapping f : C — C is called k- quasmonformal
if f is a homeomorphism and has locally L?-derivatives on C\ {f~(00)} (in
the sense of distribution) satisfying |0f| < k|0f| a.e., where df = 0f/0z and
Of = 0f/0z. Note that such an f is also be called K-quasiconformal, where
K = (1+k)/(1 —k) > 1, in the literature. The quantity u = 9f/0f is
called the complex dilatation of f. The functions in the class ¥ has primarily
been studied by O. Lehto, (compare [15]) and later R. Kithnau and W. Niske
([14]), and S. Krushkal ([13]) continued the research in this direction. More
precisely, they obtained distortion theorems, coefficient estimates, area theorem
for functions in this class. This motivates us to study the class of functions
belonging to X9(p) that have quasiconformal extension to (E, namely the class
$2(p). This function class $9(p), defined above, has been introduced recently
in [7]. The area theorem, coefficient estimates and distortion inequalities for
this class have also been studied recently (compare [6,7]).

In 1955, Bojarski considered the area distortion problem for quasiconformal
mappings (see [8]). Thereafter further improvements on this problem were
made by Gehring and Reich (compare [11, Theorem 1]) in a more precise form
and they conjectured that:

Theorem A. If f : D — D be a k-quasiconformal mapping with f(0) = 0,
then
(B < M(K)|E|VE
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for all Lebesgue measurable sets E C D, where | - | stands for the area, K =
(1+k)/(1—k)>1, and the constant M(K) =14+ O(K —1) as K — 1.

This conjecture was proved by K. Astala ([1, Theorem 1.1]) in 1994 using
thermodynamic formalism and holomorphic motion theory. Later, Eremenko
and Hamilton in [10, Theorem 1] gave a direct and much simpler proof of the
above result. They assumed f to be a k-quasiconformal mapping of the plane
which is conformal on C\ A, where A is a compact set of transfinite diameter
1 and f has the normalization f(z) = z+ o(1) near co. Therefore, we consider
the class ¥9 that consists of functions defined on D*, having k-quasiconformal
extension in D such that they have pole at the point z = oo and have the
following form

o0

(1.3) flz)=2z+) bz, z€D.

n=1

In [10, Theorem 1], if we assume A = D, then f € 9. We state this result
below:

Theorem B. Let f € X9 having the expansion of the form (1.3), so that
f(z)—2z—0as z— oo and let E be a Lebesgue measurable subset of D.

(i) If f is conformal on E, i.e., 0f =0 a.e. on E, then
[f(B)] <x' VK EIYE.
(ii) If f is conformal on C\ E, then
|f(E)| < KI|E|.
(iii) Hence, for an arbitrary Lebesque measurable subset E of D,
[F(B)] < K'Y E[VE.
All the constants in the above inequalities are best possible.

In particular, equality holds in Theorem B(i) (see [3, p. 344]) for the function

PU/E=y 2 <
(1.4) fr(z) = Q22BN r <2 <10,
z, |z] > 1,

where 0 < r < 1 and f, € XY is conformal on F = {z : |z| < r}. Next,
the inequality in Theorem B(ii) is sharp for the function f,! € X9 and E =
{z : PY/E < |z| < 1} (compare [2, p. 324]). Also the inequality in Theorem
B(iii) is sharp as the inequalities in Theorem B(i) and Theorem B(ii) are also
so. Further, Astala and Nesi proved the weighted area distortion inequality
([3, Theorem 1.6]), where they considered a non negative weight function w
defined on a Lebesgue measurable set £ C D. We state the result below:
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Theorem C. Suppose f € ¥9 having expansion of the form (1.3) and let E be
a Lebesgue measurable subset of D such that f is conformal on E, i.e., 0f =0
a.e. on E. Let w(z) > 0 be a (measurable) weight function defined on E. Then

ik (/E w(z) K dm>K < /Ew(z)Jf(z) dm < n'71/K (/E w(z)Kdm)l/K.

The inequalities are sharp. Here, dm = dxdy denotes the two dimensional
Lebesgue measure on the plane with z = x + 1y.

We note here that, when w(z) = 1 for all z € E, second inequality of the
above theorem yields Theorem B(i). Area distortion results for quasiconformal
mappings have several consequences. Firstly, they give the precise degree of
integrability of the partial derivatives of a K-quasiconformal mapping. The
precise regularity of quasiconformal mappings also controls the distortion of
Hausdorff dimension of a set under a K-quasiregular mapping. Area distortion
inequality also provides sharp bounds for the Hilbert transformation of char-
acteristic function of a set lying in the domain of a quasiconformal mapping.
See [2, Chap. 13, 14] for details.

In this article, we prove an area distortion inequality for functions in the
class ¥9(p). This is discussed in Theorem 1 in the next section. Further, we
obtain weighted area distortion inequality for theses functions. This is the
content of Theorem 2 in the next section. We point out here that Theorem
1 and Theorem 2 coincide with Theorem B and Theorem C respectively, for
p =0, i.e, when f € £. Finally as an application of Theorem 1, we present
a sharp estimate for the Hilbert transform of the characteristic function yg,
where F is a Lebesgue measurable subset of .

2. Main results

We start the section with area distortion inequality for functions in the class
SR (p)-
Theorem 1. Let k € (0,1) and each f € £9(p) has the expansion of the form
(1.2) and let E be a Lebesgue measurable subset of D*.
(i) If f is conformal on E, i.e., 0f =0 a.e. on E, then

(2.1) B < [r(1 = )72 fo(B) R
(ii) If f is conformal on C\ E, then
(22) FE)] < K|fo(E)].

(iii) Hence, for an arbitrary Lebesque measurable subset E of D*,

If(B)| < K [r(1-p*)~?] o (B)[V/E.

Here K = (14k)/(1—k) and fo(z) = 1/(2—p), z € C. The constants appearing
in the theorem are the best possible.

1-1/K
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Proof. To prove the first part of the theorem, we assume that the set E to be
open and for the second part of the theorem, we assume the set C\ E to be
open. Now, for any Lebesgue measurable set F, the proof of the theorem can
be completed by the standard approximation argument given in [3, p. 343].

(1) We see that if z € D*, then each function f € X{(p) has the expansion
of the following form

(2.3) f(1/2) =2(1 —pz)~t + Z bpz™".

Let us define g(z) := f(1/2), so that g € £9(p) with the expansion of the form
(2.3) in D*. As g is obtained by composing a Mobius transformation with a
k-quasiconformal map f in ((A:, it is also k-quasiconformal in C. Here, since f is
conformal in D, then g is also conformal in D* and hence the dilatation of g has
support in D and it has the same modulus as that of f. Since f is conformal
on E C D*, so g is again conformal on g(E) = E' C D, where §(z) = 1/z. As a
result, the dilatation p of g satisfies |u(2)| < k for all z € D\ E’ and vanishes
on E’. Now we consider the dilatation

(24 pa(z) = 4
Therefore by the Measurable Riemann Mapping Theorem (see [2, p. 168]),
there exists a unique quasiconformal mapping g(z,\) = gx(z) (for each \),
whose dilatation is py(z). Now gy € E?AI(p) as g € ¥ (p) and also gy satisfies

p- € X°(p),

, A€ D.

the normalization, g(z) = z/(1 — pz) + o(1) as z — co. Hence gy
so by Chichra’s area theorem (see [9]), we have

9A(D)] = 7(1 = p*) 2 =7 Y nlb,f* <w(1-p*) 7%
n=1

Thus
/ Jr(z)dm < w(1 —p2)_2, (z =z +1y),
D

where Jy denotes the Jacobian of the map g). As E/ C D, it follows that
(2.5) / (1—pH)2r tn(z)dm < 1.

Now by holomorphic dependence of the solution to the Beltrami equation, on
parameter (see [16, II, Theorem 3.1]), the function A — g(z, A) is holomorphic
in the variable A € D, for each fixed z € D. This dependency also happens for
the function dg(z, ) where g(z, \) is analytic in z. As ¢g(z) is conformal in E,
so is g(z, A), hence we can say that the function A — dg(z, ) is holomorphic in
A € D, for each fixed z € E’. Since g(z, A) is |A\|-quasiconformal with dilatation
ux(z) in the variable z € D, for each fixed A, we can write

Ia(z) = 19g(2, M) = 19g(2, )|* = |0g(z, I*(1 = |pa(2)]*).
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Thus for z € E’ we have Jy(2) = |0g(z,\)|?. As g(z,]) is quasiconformal in
D, the Jacobian Jy(z) never vanishes in D and in particular in E’. Hence, the
function Ag(z, A) is a non vanishing analytic function on E’ x D and so is the
function (1 — p?)27~19g(z, A)2. Now if we define

a(z,A) = (1= p*)*7~1|9g(z, N,

then log a(z, A) is harmonic in A € D, for z € E’. Thus from (2.5) we see that
the function a(z, \) satisfies the conditions of the continuous version of Lemma
1 in [10], consequently we have

THIXT
(1—p*)2n? |8g 2, \))? dm < { )2t |8g(z 0)[? dm]
T
= { )2 71 Jo(2) dm]
EI
-1 T
= [ |90(EN)] 7
Using the fact that for z € E', J\(z |8g(z /\)\2 we get from the above
inequality

(1= 2P rHoa(B) < [(1= ) an(B) ] Y

Now for A = k, we have g) = g, which yields after simplification
(2.6) l9(E") < [m(1 = p*)2] " lgo ()]

Now since f(z) = g(1/z), we get inequality (2.1), where E C D* and gq is
replaced by fo. We now find explicitly the function g(z,0) = go(z). For A =0,
the function g¢ is conformal on the whole sphere C onto itself as well as it
satisfies the normalization of the class X°(p) on D*, viz.

(i) go(z) —2/(1 —pz) = 0 as z = oo,
(i) go(1/p) = oo

(i) (1-p2)2g5(2)]._,, = L.

It is now easy to see that go(z) = z/(1 — pz) for all z € C, is the only choice
and hence fo(z) = go(1/2) = 1/(2 —p) for all z € C, which proves the theorem.

Now we consider the equality case. We observe that equality holds in (2.1)
if it does hold in (2.6) and to establish this, we consider the following function:

1/K—1 _
o (£2) + 2, 2 € B(r),
- e L, |[V/E-1 _
@7 @)=y s () |22 + 125, zeD\ B(r),
ﬁ’ z € D,

where 0 < r < 1 and B(r) (C D) is the disc given by
pd—r*)| _r(l—p?)
B(r) = { ‘ < T |

1—pr2
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It is easy to verify that g is a member of X{(p) and that g is conformal on the
set B/ = B(r) C D. To establish the equality case, we again observe that the
Mobius transformations (z —p)/(1—pz) and go(2) = z/(1 —pz) maps the above
disc B(r) onto the discs {w : |w| < r} and {w : [w—p(1—p*) 7| <r(1-p*) !
respectively. Hence the right hand side of (2.6) becomes mr2/% (1 — p?)=2.
Again g in (2.7) maps the disc B(r) onto the disc {w : |w — p(1 — p?)7}| <
r/E(1 — p?)~1}, which yields |g(B(r))| = 7r? %X (1 — p?)~2. Hence equality
holds in (2.6) for the above g and E' = B(r). Now as f(z) = g(1/z), we obtain
the following extremal function for the inequality (2.1):

1/K=1 (1_ ~
r17p2 ( Zf;z) =+ 1f>p2’ z e B(?”),
_ _ |/ KT -
f2) = 1—1172 (lz—ppz) 1z—ppz + 1—1)112’ z €D\ B(r),
1

z €D,

=
where we assume 0 < p < r < 1. Here B(r)(C D*) is the image of the disc
B(r) under the map g(z) = 1/z, given by

p(1—1?)

z+ r2 _p?

B(r):{zecz

r(1 — p?
> ;Q } .
Hence equality holds in (2.1) for the above f and E = B(r).

(ii) As before we start the proof of this part with the transformation g(z) =
f(1/2). Since g € X9(p) of the form (2.3) in D*, the dilatation p of g vanishes
outside the compact set D and hence by equation (1.7) of [6, p. 3], we get

9(=) = 2/(1 - p2) + TFg)(2). = €C.

Taking partial derivative of both sides with respect to z and using 0T [w] =
H[w], we have

(2.8) 9g(=) = 1/(1 - p2)* + H[Bg)(2),

where 7" and H denote two dimensional Cauchy and Hilbert transform respec-
tively (see [16, I §4.3]). Since dg = udg, the above equation takes the following
form

(2.9) 09(z) = p/(1 — pz)? + pH[Dg)(2).
It is also known that
(2.10) w =g

= p(1—pz) "2+ pH [p(1 — p2) 2] + pH [pH [p(1 —pz)~2]] 4 -

satisfies equation (2.9) (see [6, p. 5]). By our assumption, w = dg vanishes
outside E’. Hence using (2.8) and the fact that the Hilbert transform is a
linear isometry on L?(C), we get

9(EN = | J4(2)dm
-
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— [ (ogP - fagP) dm
E/
_ / (10— p2)2 + Hwl[* - |wf?) dm

/E/ (|11 = pz|™* +2Re ((1 — pz) *H[w])) dm

(2.11) + /El ([H[w]]* = |w|?) dm
< [n-petamez [0 p) 2 Hll dn
B B
+/C(|H[w]| — |w| )dm
(2.12) — lgo(E")| +2 / (1 p2)~2H[w]| dm,
.

where go(z) = z/(1 — pz), as mentioned earlier. Now using the fact that the
Hilbert transformation is linear, we get from the identity (2.10) that

(1—pz) *H[w] = (1 —pz)*H [u(1 — pz) 7]
+ (1 —p2)2H [pH [p(1 —p2) 2]] + -+ .

This gives
[N 2Hll| dm < [ 1-pel | [u1-p2) ]| d

(2.13) +/ [1—pz|7% |H [pH [p(1—pz)?]]| dm+--- .
E/
We now apply the Cauchy-Schwarz inequality and the isometry property of the

Hilbert transformation to the n-th term of the right hand side of (2.13) to get
an upper bound for this term. We show below the computational details:

1 —pZI‘Q‘ H [pH - pH [p(1 —pZ)‘QH‘dm
E’ N——————

IN

n terms
9 1/2
H [pH - pH [p(1 —pZ)_Q]]‘ dm)

A N VAT

lgo(E")|'/? (/C‘H [uH---uH[u(l—pZ)‘Q]szm>

n terms

oot [ | g [t (s ey )

(n — 1) terms

1/2

IN
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< oo [ ALy <1—pz>—21]\2dm)”2

(n — 1) terms

1/2
< lulloo(®)? ([ 1= peltam)

= k"|go(E"),
where ||p|lcc = k < 1. Using this estimate, we get from (2.13) that

|1—pz) *Hw |dm<2\g0E'|k"
n=1

= k(1 — k)" go(£")]-
Plugging the above estimate in (2.12), we finally obtain

(2.14) 9(E)| < (”’“) 90(E")] = Kgo(E')].

Now applying f(z) = g(1/z), we get inequality (2.2), where E C D* and
fo(2) =1/(2 —p), z € C. Next we show that the constant K in Theorem 1(ii)
is the best possible. This can be verified if we can show that the constant K
in (2.14) is the best possible. We consider the following example:

7-11:;/; (1z:ppz) + 1f’p2, z € By(r),
(2.15) h(z) = L (1z_—ppz> = K-1 ik 2 eB\ B,
= z € D*,
where By(r) (€ D) is the disc given by
p(1—r* %) rVEQ - p?)

Bo(r){z:’z g2/ T 22k } for 0 <r < 1.

Similarly to example (2.7), the functions z/(1—pz)(= go(2)) and (z—p)/(1—
pz) maps the disc By(r) onto the discs {w : |w—p(1—p?)~t < r/E(1—-p*)~1}
and {w : |w| < r'/K} respectively. This in turn implies |go(Bo(r))| = 72/ K (1—
p?)~2 and that the function A in (2.15) itself maps the disc By(r) onto the disc
{w:|w—p1—p*)~ <r(1—p*)~1}. To verify the assertion we set E’ in this
case, as ' = D\ By(r). Then h is conformal on outside of the compact set E’
and

190(E")| = Ig0(B)| — g0 (Bo(r))| = m(1 — p?)2(1 — 2/,

On the other hand,

Ih(E")| = [h(D)] — [h(Bo(r))|
= (1 - p2) 21—
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(=) () [1 - -]
=71 = p?) 7 [K(L=r?/5) = (K/2)(K 1)1 = r?/5)” 4 ..

= Klgo(E")| + O (|l90(E")?) as |go(E")| — 0.

Hence the constant K can not be improved as equality holds in (2.14) for
|go(E")| small enough. Composing h with the inverse mapping g(z) = 1/z and
taking inversion of the disc By(r) (for p < r), extremality of (2.2) follows easily,
as similar to Theorem 1(i).

(iii) To prove the last part of the theorem, we consider the following change
of variable g(z) = f(1/z). Hence g € ¥9(p ) such that it is conformal on D*
and k-quasiconformal on . We write g = g1 o g2, where go is conformal on
E C D, k-quasiconformal on D\ E and g2 € %9 (p). We assume that the function
g1 is k-quasiconformal on g»(E) and hence on go(E) (as a set of area zero is
removable for quasiconformality), so that g7 is conformal outside the compact
set go(E) and satisfies the conditions of Theorem B(ii). Applying Theorem 1(i)
to go and Theorem B(ii) to g1, we get

19(E)| = l91(92(E))| < Klga(E)| < K [r(1 = )72 [go(B)[/ 5.
Putting f(z) = g(1/z) we obtain the theorem in terms of f and go is replaced
by fo(z) = 1/(z — p). As the constants in corresponding theorems for ¢g; and
g2 are best possible, hence for Theorem 1(iii) also. O

Remark. For the case p = 0, i.e., whenever f € E%, the inequality (2.6) reduces
to that of Theorem B(i), and the extremal function g defined in (2.7) becomes
fr, as defined in (1.4). This coincidence also occurs for Theorem 1(ii), when
p = 0, as can be seen from the inequality (2.14) and the extremal function h
defined in (2.15). In this case h reduces to f,~! for p = 0, which is the extremal
case for Theorem B(ii). Although, in our case h is not the inverse mapping of
g.

Next we consider the weighted area distortion problem for a function in the
class ¥9(p), where we consider a nonnegative weight function w defined on a
Lebesgue measurable subset F of D*.

Theorem 2. Suppose f € ¥9(p) with the expansion of the form (1.2) and E be
a Lebesgue measurable subset of D* such that f is conformal on E, i.e., 0f =0
a.e. on E. Let w(z) > 0 be a (measurable) weight function deﬁned on E Then

(2.16) [(1 } (/Ew(z)l/KJo(z)dm)K
< [u
< { 2}1 " </Ew(z)KJ0(z)dm>l/K7



AREA DISTORTION UNDER MEROMORPHIC MAPPINGS 449

where Jy and Jy denotes Jacobian of the function f and fo(z) = 1/(z — p),
z € C respectively. The inequalities are sharp.

Proof. We first prove the theorem for an open set E and for any measurable
set F, we use the approximation argument given in [3, p. 343].

Here initially we consider the weight function w > 0 that are bounded away
from 0 and oo on the set E. The case for general w follows from a limiting
argument. Now, to establish the theorem we follow the lines of the proof of
[3, Theorem 1.6]. For the sake of completeness, we provide here computation
details. Let g(z) = f(1/z) having expansion of the form (2.3) in D*. Next we
consider the weight function wy(z) = w(1/z) defined on G(E) = E' C D, where
G(z) = 1/z. Therefore g is conformal on E’ and k-quasiconformal on D\ E’.
Similarly to (2.4), we consider the function gy (z) with the dilatation Ak~11(z)
for A € D. Again g, (z) is conformal on E’ (since g is so) and

(2.17) gr(2) #0 forallz€ E' and A € D.

Using the concavity of logarithm and Jensen’s Inequality, we get for any func-
tion a(z) > 0 defined in E’, that

29 e [ ) ~eun | [ aoos (22) an].

where the supremum is taken over all functions ¢(z) defined on E’, such that
(1) 0 < q(z) <1,ae. z€ E" and (i) [, q(z)dm = 1. In our case, we take

a(z) = (1= p*)*n " wo(2)Ja(2) = (1 = p*)?1~ wo(2)|g5 (), 2 € B,
since for z € E', Jy(z) = |0gx(2)|* = |gi(2)|>. Hence using (2.18), we get

[ =Pl o n

_ SW(UE,‘](Z“% € = ) o (2)lg4 (= >|2> o]
|

q(z)

(2.19) = sup

where

>

S
>

S~—"
Il

/,Q(z) log ((1 —pZ)Zz;g&(Z)F) i

is harmonic in A € D, by (2.17), for each z € E’. Using (2.18) and (2.5)
successively, we get

m) <tog ([ (1= pPr b)) <o

So for each z € E’, h,()) is harmonic and nonpositive in D. Hence by using
Harnack’s Inequality and the fact that go(z) = z/(1 — pz) (as claimed in the



450 B. BHOWMIK AND G. SATPATI

proof of Theorem 1(i)), we have

hyp(X) < (1= AN+ [A]) ™y (0)
==+ [ ate)ton <(1p );(Tz) 196(=) ) dm.

For A = k, we have gy = g and (1 4+ k)/(1 — k) = K. Thus using above
inequality (for A = k) in (2.19), and also using (2.18) once more, we get

g ([ (0= 2Pt un(e gy 2)

ap [, senosuntoyan + . [ ateyos (HL-002 )

SRR R (S LT CACY PN

q(2) q(2)

~ log (/,(1 P2 Ywo(2)5 Ty (2) dm)l/K.

Taking exponentiation and doing a rearrangement, we obtain

(2.20) / wo(2)J,(2) dm < [(1_7;2)2}1_1/1{ < / wo(2) Ty (2) dm>1/K.

Now putting w(z) = wo(1/2), f(2) = g(1/z) and observing that Jy(z) =
Jp(1/2)]2|74, T4 (2) = T4, (1/2)]2| 74, second inequality of (2.16) follows from
above. Here E' and J,, is replaced by E and Jy, = Jy respectively, where
fo(z) = 1/(z — p). To obtain the first inequality we use the other part of the
Harnack’s Inequality in (2.19) viz.

hp(A) = (14 [AD(1 = [A) 7, (0)

and proceed in a similar fashion. Next we show that the second inequality of
Theorem 2 is sharp. To verify this, it is sufficient to show that the inequality
(2.20) is sharp. We follow the arguments given in [3, Example 2.1]. First we

IN

choose the numbers wj, p;,r;,p; for j = 1,...,n, suitably as 1 < w; < wy <
- < wp and 0 < pj,r; < 1 such that
—2/K

J n

(2.21) w; = (H rl> and ijw]K =1
=1 =1

We now consider the function

(2.22) g=[frlo--oflr where fli(2) = p;fr;(2/pj), j=1,...,n,

where 0 < p; < 1for j =2,...,n with p; =1 and f, defined in (1.4). Next we
consider the weight function wg(z) = Z?:l wjXxEg,; (), where

Ei={z:pj41 <l|z|<pjrj}, 1<j<n-1; E,={z:|z] < paran}.



AREA DISTORTION UNDER MEROMORPHIC MAPPINGS 451

The composition in (2.22) is well defined as we have
252 — p? ; 2 2
Tip; — Pjp1 =D, L <j<n—1; rop, = pn.

In our case, we define

(223)  G)=(1-) (f_‘]fz) Fp/(1- ), 2€C,

and the weight function as
Wo(z) = D> wixg,(2), By = [ (Ey), where f(2) = (z = p)/(1 - p2).
j=1

Now the function G defined in (2.23) belongs to the class £9(p), as the function
g defined in (2.22) belongs to the class X9. If we now take F = UJ_ £, then
G is conformal on E. Hence using first relation of (2.21), it is easy to see that

Ja, = Wo(2)57H1 — pz|™* = Wo(2) X Ygo(E)|, z € E.
Again, using second relation of (2.21), we get

/EWO(Z)Jg(Z) dm = Z (w;{ /E |1 — pz|~* dm>

J

I
[
/~
=
=
o
=
&=
=

=1

n—1
=n(1—p*) 72 | D wf (o — piy1) +whrlpn

j=1
=m(l- p2)_2 Zp]wJK

=1
=n(l—p")~*
2\—2711-1/K K VK
= [r(1-p*)~?] _Wo(2)™ Jgy(2) dm
E

As equality holds in (2.20), hence it also holds for the second inequality in
(2.16). Optimality of the other inequality in (2.16) can be established by similar
construction. O

Remark. (i) If w(z) =1 for all z € E, then the second inequality of Theorem 2
implies Theorem 1(i).

(ii) In Theorem C, we assumed f € £9 of the form (1.3) in D*, as taken
in [3]. But if we take f € X9 of the form (1.1) (with by = 0) in D and f is
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conformal on a Lebesgue measurable subset F of D*, then Theorem C can be
restated as

=K (/Ew(z)l/Kz|_4dm>K</Ew(z)Jf(z)dm

1/K
< plV/K (/ w(z)X|z|~* dm) :
B

This result coincides with Theorem 2 for p = 0.

As an application of Theorem 1, we prove the next result. It deals with the
bounds of the Hilbert transform of the characteristic function of a Lebesgue
measurable set £ C D.

Theorem 3. Let E be a Lebesque measurable subset of D. Then

(2.24) /D\E |1_1pz|2 H[(l f’;z)Q] dm < |go(E)|log (”“‘W>

|90(E)]
where go(z) = z/(1 — pz),z € C. The inequality is sharp.

Proof. For any function p with |u| = 1, supported in D\ E, we define uy(z) =
A(z) for A € D and consider the corresponding family of quasiconformal map-
pings gy in (/C\, with dilatation py. We also assume that the functions g, are
normalized such that they belong to the class ¥%(p), when restricted on D*,
therefore each function gy belongs to the class E?M (p), for each A € D. Now by
the assumption each g, is conformal on F, which gives from (2.11) that

l0A(E)| = [E 19ga(2) ]2 dm

(2.25) = |go(E)] +2Re/ (1—pz) *H[0g,] dm+/ |H[0g,]|* dm.
E E
Now from (2.10), w = dgy can be written as

(2.26) dgn = (1 — pz) % + ha(2),

where [|hy]2 < C|A]%, C is a constant. Using above identity it is easy to see
that

/ \H[BgA]|2 dm = O(A[2) asA — 0,
E
Again from (2.26) we get
Re/ (1 —pz)"2H[dgx(2)] dm
E
= Re/ M1 —p2)2H[u(1 — p2)~2Jdm + O(|\*), X —0.

E

Now upon using the last two estimates obtained above, we get from (2.25) that

(2.27) |gr(E)| = Igo(E)|+2R6/E>\(1—pE)_QH[#(l—pZ)_2] dm + O(]Af).
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Now as gy € Z(‘))\l(p), by the area distortion inequality (Theorem 1(i)), we

get

A (B)] < [n(1—p) 2 |go(B)[VE,

where K = (1+ |A\|)(1 —|A])~!. Since 1 — K~1 = 2|\| + O(]\|?), therefore the
above inequality can be written as

97 (E)] < 1g0(E)] + 2[Allgo(E)|log ((1 = p*)~*|go(E)|7") + O(IA]?).

Comparing the coefficients of the terms which are linear in |A| of the above
inequality and that of with (2.27), we get

Re [A [ 0-p2) 2 Hlu1-p2) dm} < \l90(B)| log (w(1—1%)2lgo(B)|)..
E

Now for a particular choice of A, we have

Re | [ (1-p) 2 Hlu1-p2) 2Jam| =

From above two relations, we get

/E(l—pf)_QH[M(l—pZ)_z] dm’ < |go(E)|log (7 (1—p*) |90 (E)| ™) -

/E<1 — pE) " 2H[u(1—pz) "2 dm| .

(2.28)

Next, by using the symmetric property of H (see [2, p. 95]), we obtain
[ =p0 2 p2) P dm = [ el = p2) 2 Hlp(L - p2) ) dm
E C
= [ ult=p2) 2 Hp(1 = p2) %) dm
(

N / u(1 —pz) ?Hlxp(1l — pz)~*| dm,
D\E

since p has support in D\ E. Using the inequality (2.28), we get

< |go(E)|log (m(1 — p*)~|go(E)| ) .

/ u(1—pz) *Hlxp(l — pz)~*]dm
D\E

For a suitable choice of u, we can take modulus inside the integral of the left
hand side of the above inequality, which proves the theorem. Finally it remains
to prove the sharpness of the inequality (2.24). To show this we consider

1—r? 1—p?
oo L))

1— p2r2 1—p2r2
Clearly E C D. Hence |go(E)| = 7r%(1 — p?)~2, so that right hand side of

(2.24) reduces to 27(1 — p?)~2r2log(r~!). Next in order to find the Hilbert
transform of the function xg(1 — pz)~2, we define

}, 0<r<l.

£(2) = (%), 2€B,
zZ) = 2 o
(), z€C\E.
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Here f is continuous on C and a little calculation reveals that of = xg(1—pz)~2
and f = —r*(z — p) " ?xc\g- Using the relation H[0f] = 8, we have

Hlxe(1 —pz) % = —r*(z = p) *xc\&-
Let w = f(2) = (2—p)/(1—pz) = u+iv. Therefore, f(D\E) = {w : r < |w| < 1}
and Jz(z) = (1 —p?)?|1 — pz|~*. Hence we have,

/ 11— pe|? |Hlxe(l - p2) 72| dm
D\E

:7“2/ (|1—pz||z—p\)_2dm
D\E
2 22
_ 1—pz 1-—
:TQ(l_pZ) 2/ p ( p°)
D\E| #—P

|1 —pz|*
=7r2(1 —;02)*2/~ lw| ™2 dudv

f(D\E)
=2n(1— pz)_zr2 log(r_l).

dm

Thus the inequality (2.24) is sharp and this completes proof of the theorem. [

Remark. For p = 0, the functions g, defined in the proof of Theorem 3 belong to
the class EOA and the function gg is the identity function. Hence the inequality
(2.24) reads as (compare Theorem 14.6.1 of [2, p. 385])

/ \H(x5]| dm < |E|log (n/|E])
D\E
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