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MEROMORPHIC FUNCTIONS SHARING 1CM+1IM

CONCERNING PERIODICITIES AND SHIFTS

Xiao-Hua Cai and Jun-Fan Chen

Abstract. The aim of this paper is to investigate the problems of mero-

morphic functions sharing values concerning periodicities and shifts. In
this paper we prove the following result: Let f(z) and g(z) be two noncon-

stant entire functions, let c ∈ C\{0}, and let a1, a2 be two distinct finite

complex numbers. Suppose that µ (f) 6= 1, ρ2 (f) < 1, and f(z) = f(z+c)
for all z ∈ C. If f(z) and g(z) share a1 CM, a2 IM, then f(z) ≡ g(z).

Moreover, examples are given to show that all the conditions are neces-
sary.

1. Introduction

We use C and C = C ∪ {∞} to denote the whole complex plane and the
extended complex plane, respectively. Throughout this paper, a meromorphic
(resp. entire) function always means a meromorphic (resp. analytic) function
in C. It is assumed that the reader is familiar with the basic concepts of
Nevanlinna theory and in particular with its standard terms and symbols (see,
for example, [14, 18]).

Let f(z) and g(z) be nonconstant meromorphic functions. Denoting by
E(a, f) (resp. E(a, f)) the set of those points z ∈ C where f(z) = a counting
multiplicities (resp. ignoring multiplicities), we say that f(z) and g(z) share a
CM (resp. IM) if E(a, f) = E(a, g) (resp. E(a, f) = E(a, g)).

The following definitions are also needed in this paper.

Definition 1.1. Let f(z) be nonconstant meromorphic. Then the order ρ (f),
hyper-order ρ2 (f), lower order µ (f) and low hyper-order µ2 (f) of f(z) are
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defined in turn as follows:

ρ (f) = lim sup
r→∞

log T (r, f)

log r
, ρ2 (f) = lim sup

r→∞

log log T (r, f)

log r
,

µ (f) = lim inf
r→∞

log T (r, f)

log r
, µ2 (f) = lim inf

r→∞

log log T (r, f)

log r
.

Definition 1.2. Let f(z) be nonconstant meromorphic. If ρ (f) < +∞, then
we denote by S(r, f) any quantity satisfying

S(r, f) = O(log r) (r →∞).

If ρ (f) = +∞, then we denote by S(r, f) any quantity satisfying

S(r, f) = O(log(rT (r, f))) (r →∞, r 6∈ E),

where E is a set of finite linear measure not necessarily the same at every
occurrence.

The study of the uniqueness theory of meromorphic functions began with
famous Nevanlinna’s five value theorem, which claims that if two non-constant
meromorphic functions f(z) and g(z) share five distinct complex numbers IM,
then f(z) ≡ g(z). Also Nevanlinna’s four value theorem points out that if
two meromorphic functions f(z) and g(z) share four distinct complex numbers
CM, then f(z) and g(z) are much related by a fractional linear transformation
(see, for example, [14, 18]). The condition 4CM in the four value theorem has
been weakened to 2CM+2IM due to Gundersen [9]. It is well-known that 4CM
cannot be further relaxed to 4IM [8], while 1CM+3IM remains open [10]. In
the case of less than four shared values (even 3CM), the quantified relations
between two meromorphic functions f(z) and g(z) are difficult to establish in
general [18]. But it is still interesting to put forward the following questions.

Question 1.1. What can be said if one nonconstant meromorphic function and
another nonconstant periodic meromorphic function share less than or equal
to three values?

Question 1.2. What can be said if two nonconstant periodic meromorphic
functions with the same nonzero period share less than or equal to three values?

As for Question 1.1, in 1989 Brosch [1,18] proved the following result in his
PhD thesis.

Theorem 1.1 (See [1] or [18, Theorem 5.15]). Let f(z) and g(z) be two non-
constant meromorphic functions, let c ∈ C\{0}, and let a1, a2, a3 be three
distinct complex numbers. If f(z) and g(z) share a1, a2, a3 CM, and if f(z)
is a periodic function with period c, then g(z) is also a periodic function with
period c.

In 1992, Zheng [18, 19] improved a result given by Brosch and obtained the
following theorem, which dealt with Question 1.1 and Question 1.2.
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Theorem 1.2 (See [19, Theorem] or [18, Theorem 5.18]). Let f(z) and g(z)
be two nonconstant meromorphic functions sharing 0, 1, ∞ CM, and let c ∈
C\{0}. If f(z) is a periodic function with period c, then g(z) is also a periodic
function with period c. Furthermore, if µ2 (f) < 1, then f(z) ≡ g(z) or f(z)

and g(z) assume the following form f(z) = ea1z+b1−1
ea2z+b2−1

and g(z) = e−a1z−b1−1
e−a2z−b2−1

,

where a1 = 2mπi
c , a2 = 2kπi

c , b1, b2 are constants, and m, k are some integers.

Based on the definition of periodic functions and above theorems, it seems
natural to study shared value problems between a meromorphic function f(z)
and its shift f(z + c) or between one meromorphic function f(z) and another
function’s shift g(z + c), where c ∈ C\{0}. The background for these con-
siderations lies in the recent great interest of studying difference analogues of
Nevanlinna theory for meromorphic functions of finite order, see, e.g., the pa-
pers [11, 12] by Halburd and Korhonen and, independently, [6, 7] by Chiang
and Feng. Currently fundamental theorems of these difference analogues of
Nevanlinna theory were extended by Halburd, Korhonen, and Tohge [13] to
meromorphic functions of hyper-order strictly less than one. Recently, a num-
ber of papers (see, for example, [2,15,16]) focus on the problem of value sharing
for shifts of meromorphic functions.

In 2012, Chen and Xu [5] replaced the assumption 3CM in Theorem 1.2
by 2CM+1IM with some additional assumptions and obtained the following
theorem.

Theorem 1.3 (See [5, Theorem 2]). Let f(z) and g(z) be two nonconstant
meromorphic functions, let c ∈ C\{0}, and let a1, a2, a3 be three distinct com-

plex numbers. Suppose that 1 < µ (f) ≤ ρ (f) <∞, lim supr→∞
N

(
r, 1

f−a1

)
T (r,f) < 1,

and f(z) = f(z + c) for all z ∈ C. If f(z) and g(z) share a1, a2 CM, and a3

IM, then f(z) ≡ g(z).

In 2017, Chen [3] proposed another result closely related to Theorem 1.3.

Theorem 1.4 (See [3, Corollary 1.7]). Let f(z) and g(z) be two nonconstant
meromorphic functions, and let c ∈ C\{0}. Suppose that µ (f) 6= 1, ρ2 (f) < 1,
f(z) = f(z + c) and g(z) = g(z + c) for all z ∈ C. If f(z) and g(z) share 0, ∞
CM, and 1 IM, then f(z) ≡ g(z).

More recently, Chen [4] further considered the case of 1CM+2IM in Theo-
rems 1.3-1.4 by deriving the following theorem in his PhD thesis.

Theorem 1.5 (See [4, Theorem 3.4.1]). Let f(z) and g(z) be two nonconstant
entire functions, let c ∈ C\{0}, and let a1, a2 be two nonzero distinct finite
complex numbers. Suppose that µ (f) 6= 1, ρ2 (f) < 1, and f(z) = f(z + c) for
all z ∈ C. If f(z) and g(z) share 0 CM and a1, a2 IM, then f(z) ≡ g(z).

It is natural to ask whether the conclusion of Theorem 1.5 is still valid if
1CM+2IM is replaced by 1CM+1IM. In this paper, we give an affirmative
answer to this question, where the following theorem is established.
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Theorem 1.6. Let f(z) and g(z) be two nonconstant entire functions, let
c ∈ C\{0}, and let a1, a2 be two distinct finite complex numbers. Suppose that
µ (f) 6= 1, ρ2 (f) < 1, and f(z) = f(z+ c) for all z ∈ C. If f(z) and g(z) share
a1 CM, a2 IM, then f(z) ≡ g(z).

All the conditions in Theorem 1.6 are necessary, as is seen below.

Remark 1.1. The following example shows that the condition “µ (f) 6= 1” in
Theorem 1.6 is necessary.

Example 1.1. Let f(z) = ez−e2z+1
ez and g(z) = ez−e2z+1

e−z . Clearly, f(z) is
a periodic function with period 2πi; f(z) and g(z) are both entire functions
satisfying µ (f) = 1 and ρ2 (f) < 1. It is easy to verify that f(z) and g(z) share
0 CM, 1 IM. But f(z) 6≡ g(z).

Remark 1.2. The following example shows that the condition “ρ2 (f) < 1” in
Theorem 1.6 is necessary.

Example 1.2. According to the result obtained by Ozawa (see [17, Theorem
1]): for an arbitrary real number γ ∈ [1,∞), there exists a periodic entire
function Π(z) with period c 6= 0 such that ρ(Π) = γ ∈ [1,∞). Set f(z) =
eΠ(z)−e2Π(z)+1

eΠ(z) and g(z) = eΠ(z)−e2Π(z)+1
e−Π(z) . Clearly, f(z) is a periodic function

with period c 6= 0; f(z) and g(z) are both entire functions satisfying µ (f) 6= 1
and ρ2 (f) ≥ 1. It is easy to verify that f(z) and g(z) share 0 CM, 1 IM. But
f(z) 6≡ g(z).

Remark 1.3. The following example shows that the condition that “f(z) =
f(z + c) for all z ∈ C” in Theorem 1.6 is necessary.

Example 1.3. Let f(z) = ez
l
−e2z

l
+1

ezl
and g(z) = ez

l
−e2z

l
+1

e−zl
, where l ≥ 2 is a

positive integer. Clearly, there does not exist any finite value c 6= 0 such that
f(z) = f(z+ c) for all z ∈ C; f(z) and g(z) are both entire functions satisfying
µ (f) = l and ρ2 (f) < 1. It is easy to verify that f(z) and g(z) share 0 CM, 1
IM. But f(z) 6≡ g(z).

Remark 1.4. The following example shows that the condition “1CM+1IM” in
Theorem 1.6 cannot be replaced by “1CM”.

Example 1.4. Let Π(z) be the same as in Example 1.2 with µ(Π) 6= 1. Set

f(z) = Π(z) and g(z) = Π(z)
ez . Clearly, f(z) is a periodic function with period

c 6= 0; f(z) and g(z) are both entire functions satisfying µ (f) 6= 1 and ρ2 (f) <
1. It is easy to verify that f(z) and g(z) only share 0 CM. But f(z) 6≡ g(z).

Remark 1.5. The following examples show that the condition that “f(z) and
g(z) are both entire functions” in Theorem 1.6 is necessary.

Example 1.5. Let Π(z) be the same as in Example 1.4. Set f(z) = Π(z) and

g(z) = 2Π(z)
Π2(z)+1 . Clearly, f(z) is a periodic entire function with period c 6= 0
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satisfying µ (f) 6= 1 and ρ2 (f) < 1. Moreover, by Picard’s theorem g(z) has
infinitely many poles. It is easy to verify that f(z) and g(z) share 0 CM, 1 IM.
But f(z) 6≡ g(z).

Example 1.6. Let Π(z) be the same as in Example 1.4. Set f(z) = Π2(z)
Π2(z)−4

and g(z) = Π2(z)
Π2(z)−1 . Clearly, f(z) is a periodic function with period c 6= 0

satisfying µ (f) 6= 1 and ρ2 (f) < 1. Moreover, by Picard’s theorem f(z) and
g(z) have infinitely many poles. It is easy to verify that f(z) and g(z) share 0
CM, 1 IM. But f(z) 6≡ g(z).

The rest of this paper is organized as follows. Section 2 contains some
preliminary lemmas, and the proof of the main theorem can be found in Section
3.

2. Some lemmas

Lemma 2.1 (See [18, Theorem 1.19 and Corollary of Theorem 1.19]). Let f(z)
and g(z) be nonconstant meromorphic functions. If

T (r, f) = O(T (r, g)) (r →∞, r 6∈ E, mesE <∞),

then µ(f) ≤ µ(g), ρ(f) ≤ ρ(g), µ2(f) ≤ µ2(g), ρ2(f) ≤ ρ2(g).

Lemma 2.2 (See [18, Lemma 5.1]). Let f(z) be a nonconstant periodic mero-
morphic function. Then ρ(f) ≥ 1, µ(f) ≥ 1.

Lemma 2.3 (See [18, Theorem 1.42]). Let f(z) be a nonconstant meromorphic
function. If 0 and ∞ are two Picard exceptional values of f(z), then f(z) =
eh(z), where h(z) is a nonconstant entire function.

Lemma 2.4 (see [4, Theorem 2.3.1]). Let f(z) be a nonconstant meromorphic
function such that N(r, f) = S(r, f) and ρ2 (f) < 1. Let c ∈ C\{0}, and let
a1, a2 be two distinct finite complex numbers. If f(z) and f(z + c) satisfy
E(a1, f(z)) ⊂ E(a1, f(z + c)) and E(a2, f(z)) ⊂ E(a2, f(z + c)), then f(z) ≡
f(z + c).

Lemma 2.5 (See [18, Theorem 1.45]). Let h(z) be a nonconstant entire func-
tion and f(z) = eh(z). Then ρ2 (f) = ρ(h).

By using the same argument as in Theorem 1.14 of [18], we can easily obtain
the following result.

Lemma 2.6. Let f(z) and g(z) be two nonconstant meromorphic functions.
Then

ρ2(f · g) ≤ max{ρ2(f), ρ2(g)},
ρ2(f + g) ≤ max{ρ2(f), ρ2(g)}.

Lemma 2.7 (See [18, Theorem 1.21]). Let f(z) be a nonconstant meromorphic
function. Then ρ (f) = ρ (f ′) and µ (f) = µ (f ′).
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Lemma 2.8 (See [18, Theorem 1.14]). Let f(z) and g(z) be two nonconstant
meromorphic functions. Then

ρ (f · g) ≤ max {ρ (f) , ρ (g)} ,

ρ (f + g) ≤ max {ρ (f) , ρ (g)} .

3. Proof of Theorem 1.6

Suppose on the contrary that f(z) 6≡ g(z). Since f(z) and g(z) share a1 CM,
a2 IM, and f(z) and g(z) are two nonconstant entire functions, by the second
fundamental theorem we have

T (r, f) ≤ N
(
r,

1

f − a1

)
+N

(
r,

1

f − a2

)
+N (r, f) + S(r, f)

= N

(
r,

1

g − a1

)
+N

(
r,

1

g − a2

)
+ S(r, f)

≤ T
(
r,

1

g − a1

)
+ T

(
r,

1

g − a2

)
+ S(r, f)

= 2T (r, g) + S(r, f) (r →∞, r 6∈ E, mesE <∞).(3.1)

Similarly,

(3.2) T (r, g) ≤ 2T (r, f) + S(r, g) (r →∞, r 6∈ E, mesE <∞).

From the assumption, (3.1)-(3.2), and Lemmas 2.1-2.2 we get

(3.3) ρ(g) = ρ(f) ≥ 1, µ(g) = µ(f) ≥ 1, ρ2(g) = ρ2(f) < 1, S(r, f) = S(r, g).

For convenience, we set S(r) := S(r, f) = S(r, g). By Lemma 2.3, we know
that there exists an entire function h1(z) such that

(3.4) V1 =
f(z)− a1

g(z)− a1
= eh1(z).

Now it follows from (3.4) that

(3.5)
f(z + c)− a1

g(z + c)− a1
= eh1(z+c),

where c ∈ C\{0}. Since f(z) and g(z) share a1 CM, a2 IM, and f(z) = f(z+c)
for all z ∈ C, we have

E(a1, g(z)) = E(a1, f(z)) = E(a1, f(z + c)) = E(a1, g(z + c)),

E (a2, g(z)) = E (a2, f(z)) = E (a2, f(z + c)) = E (a2, g(z + c)) .

Noting that ρ2(g) < 1 and N(r, g) = S(r, g) by (3.3) and the assumption that
g(z) is entire, respectively, this together with Lemma 2.4 yields

(3.6) g(z) ≡ g(z + c).

Then we deduce by (3.4)-(3.6) that

(3.7) eh1(z)−h1(z+c) ≡ 1.
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This implies that h1(z)−h1(z+c) must be a constant. Let h1(z)−h1(z+c) ≡ η
for some constant η ∈ C. Then by (3.7) we get

(3.8) eη ≡ 1,

and h′1(z) − h′1(z + c) ≡ 0. Consequently h′1(z) is a periodic function with
period c 6= 0. Now from (3.3)-(3.4), and Lemmas 2.5-2.6, we obtain ρ(h1) < 1.
Noting ρ(h′1) = ρ(h1) < 1 by Lemma 2.7, we thus deduce by Lemma 2.2 that
h′1(z) must be a constant. Hence we can assume that

(3.9) h1(z) = αz + β,

where α, β ∈ C are two constants. Substituting (3.9) into (3.4) gives

(3.10) V1 =
f(z)− a1

g(z)− a1
= eh1(z) = eαz+β .

Next we introduce another auxiliary function

(3.11) V2 = (f − g)

(
f ′

(f − a1) (f − a2)
− g′

(g − a1) (g − a2)

)
.

Firstly, we need to prove two properties of V2.

Property 1. For ξ0 ∈ C, f(ξ0) = g(ξ0) = a1 ⇒ V2(ξ0) = 0.

Proof. Because f(z) and g(z) share a1 CM, let ξ0 is a zero of f(z) − a1 of
multiplicity p and so a zero of g(z) − a1 also of multiplicity p. Then we have,
near ξ0,

(3.12) f(z)− a1 = sp(z − ξ0)p + sp+1(z − ξ0)p+1 + sp+2(z − ξ0)p+2 + · · · ,

(3.13) g(z)− a1 = tp(z − ξ0)p + tp+1(z − ξ0)p+1 + tp+2(z − ξ0)p+2 + · · · ,

where sı (ı = p, p+ 1, . . .) and tı (ı = p, p+ 1, . . .) are finite complex numbers
with sp 6= 0 and tp 6= 0. Thus by (3.12)-(3.13) we get

(3.14) f ′(z) = psp(z−ξ0)p−1+(p+1)sp+1(z−ξ0)p+(p+2)sp+2(z−ξ0)p+1+· · · ,

(3.15) g′(z) = ptp(z−ξ0)p−1+(p+1)tp+1(z−ξ0)p+(p+2)tp+2(z−ξ0)p+1+· · · .

Combining (3.12) with (3.14) we have

f ′

(f − a1) (f − a2)

(3.16)

=
1

a1 − a2
· psp(z − ξ0)p−1 + (p+ 1)sp+1(z − ξ0)p + (p+ 2)sp+2(z − ξ0)p+1 + · · ·

sp(z − ξ0)p + sp+1(z − ξ0)p+1 + sp+2(z − ξ0)p+2 + · · ·

=
p

(a1 − a2)(z − ξ0)
+

sp+1

sp(a1 − a2)
+O(z − ξ0).
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On the other hand, by (3.13) and (3.15) we get

g′

(g − a1) (g − a2)

(3.17)

=
1

a1 − a2
· ptp(z − ξ0)p−1 + (p+ 1)tp+1(z − ξ0)p + (p+ 2)tp+2(z − ξ0)p+1 + · · ·

tp(z − ξ0)p + tp+1(z − ξ0)p+1 + tp+2(z − ξ0)p+2 + · · ·

=
p

(a1 − a2)(z − ξ0)
+

tp+1

tp(a1 − a2)
+O(z − ξ0).

Since f(z) and g(z) share a1 CM, combining (3.11), (3.16), and (3.17), we see
that V2(ξ0) = 0. �

Property 2. For ξ1 ∈ C, f(ξ1) = g(ξ1) = a2 ⇒ V2(ξ1) 6=∞.

Proof. Because f(z) and g(z) share a2 IM, let ξ1 is a zero of f(z) − a2 of
multiplicity i and so a zero of g(z)− a2 also of multiplicity j, which is possibly
different from i. Then we have, near ξ1,

(3.18) f(z)− a2 = qi(z − ξ1)i + qi+1(z − ξ1)i+1 + qi+2(z − ξ1)i+2 + · · · ,

(3.19) g(z)− a2 = wj(z − ξ1)j + wj+1(z − ξ1)j+1 + wj+2(z − ξ1)j+2 + · · · ,
where qι (ι = i, i+ 1, . . .) and wκ (κ = j, j + 1, . . .) are finite complex numbers
with qi 6= 0 and wj 6= 0. Hence from (3.18)-(3.19) we get

(3.20) f ′(z) = iqi(z−ξ1)i−1 +(i+1)qi+1(z−ξ1)i+(i+2)qi+2(z−ξ1)i+1 + · · · ,

g′(z) = jwj(z − ξ1)j−1 + (j + 1)wj+1(z − ξ1)j(3.21)

+ (j + 2)wj+2(z − ξ1)j+1 + · · · .

Thus by (3.18) and (3.20) we have

f ′

(f − a1) (f − a2)
(3.22)

=
1

a2 − a1
· iqi(z − ξ1)i−1 + (i+ 1)qi+1(z − ξ1)i + (i+ 2)qi+2(z − ξ1)i+1 + · · ·

qi(z − ξ1)i + qi+1(z − ξ1)i+1 + qi+2(z − ξ1)i+2 + · · ·

=
i

(a2 − a1)(z − ξ1)
+

qi+1

qi(a2 − a1)
+O(z − ξ1).

On the other hand, by (3.19) and (3.21) we get

g′

(g − a1) (g − a2)

(3.23)

=
1

a2 − a1
· jwj(z − ξ1)j−1 + (j + 1)wj+1(z − ξ1)j + (j + 2)wj+2(z − ξ1)j+1 + · · ·

wj(z − ξ1)j + wj+1(z − ξ1)j+1 + wj+2(z − ξ1)j+2 + · · ·

=
j

(a2 − a1)(z − ξ1)
+

wj+1

wj(a2 − a1)
+O(z − ξ1).
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Since f(z) and g(z) share a2 IM, it follows from (3.11), (3.22), and (3.23) that
V2(ξ1) 6=∞. �

Secondly, we discuss the following two cases.
Case 1. Suppose that V2 6≡ 0.
According to Property 1 and Property 2, we can deduce by (3.11) that all

possible poles of V2 only occur at the poles of f(z) and g(z), which are only
finitely many poles, so

(3.24) N (r, V2) = O(log r).

It follows from (3.4), (3.11), and the first fundamental theorem that

m (r, V2) = m

(
r, (f − g)

(
f ′

(f − a1) (f − a2)
− g′

(g − a1) (g − a2)

))
≤ m

(
r,

(f − g) f ′

(f − a1) (f − a2)

)
+m

(
r,

(f − g) g′

(g − a1) (g − a2)

)
+O(1)

≤ m
(
r,
f − g
f − a1

)
+m

(
r,

f ′

f − a2

)
+m

(
r,
f − g
g − a1

)
+m

(
r,

g′

g − a2

)
+O(1)

= m

(
r, 1− g − a1

f − a1

)
+m

(
r,
f − a1

g − a1
− 1

)
+ S (r)

≤ m
(
r,
g − a1

f − a1

)
+m

(
r,
f − a1

g − a1

)
+ S (r)

= m

(
r,

1

V1

)
+m (r, V1) + S (r)

≤ T
(
r,

1

V1

)
+ T (r, V1) + S (r)

= 2T (r, V1) + S (r) ,

which together with (3.24) yields

(3.25) T (r, V2) ≤ 2T (r, V1) + S (r) .

By Property 1 and the first fundamental theorem we have

(3.26) N

(
r,

1

f − a1

)
≤ N

(
r,

1

V2

)
≤ T (r, V2) +O(1).

Since f(z) and g(z) share a2 IM, it follows from (3.4) and (3.10) that

(3.27) N

(
r,

1

f − a2

)
≤ N

(
r,

1

V1 − 1

)
≤ T (r, V1) +O(1).

Thus, we deduce by (3.25), (3.26), (3.27) and the second fundamental theorem
that

T (r, f) ≤ N
(
r,

1

f − a1

)
+N

(
r,

1

f − a2

)
+N (r, f) + S(r)
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≤ T (r, V2) + T (r, V1) + S(r)

≤ 3T (r, V1) + S(r) (r →∞, r 6∈ E, mesE <∞),

which implies from Lemma 2.1 that

(3.28) ρ(f) ≤ ρ(V1).

On the other hand, by (3.2), (3.10), and the first fundamental theorem we
obtain

T (r, V1) = T

(
r,
f − a1

g − a1

)
≤ T (r, f) + T (r, g) +O(1)

≤ 3T (r, f) + S(r),

which yields from Lemma 2.1 that

(3.29) ρ(V1) ≤ ρ(f).

Combining (3.28), (3.29), and (3.10) we have

(3.30) ρ(f) = ρ(V1) = ρ
(
eαz+β

)
≤ 1.

Noting that 1 ≤ µ(f) ≤ ρ(f) by (3.3), we deduce by (3.30) that µ(f) = 1,
which contradicts the condition µ(f) 6= 1.

Case 2. Suppose that V2 ≡ 0.
Then by the original assumption f(z) 6≡ g(z) and (3.11) we get

(3.31)
f ′

(f − a1) (f − a2)
− g′

(g − a1) (g − a2)
≡ 0.

Now assume that ξ1 is a zero of f(z) − a2 of multiplicity i and so a zero of
g(z)− a2 also of multiplicity j, which is possibly different from i because f(z)
and g(z) share a2 IM. Combining (3.18)-(3.23) in proving Property 2, and
(3.31), it follows that i = j, which means that f(z) and g(z) must share a2

CM. Using the same argument as in the proof of (3.10), we have

(3.32) V̂1 =
f(z)− a2

g(z)− a2
= eh2(z),

where h2(z) = α̂z + β̂, α̂, β̂ ∈ C are constants. Combining (3.10) with (3.32),
we get

(3.33) f(z) =
(a1 − a2) eh2(z) − a1e

h2(z)−h1(z) + a2

1− eh2(z)−h1(z)
.

Then it follows from (3.33) and Lemma 2.8 that

ρ(f) ≤ max
{
ρ(eh2), ρ(eh2−h1)

}
≤ max

{
ρ(eh1), ρ(eh2)

}
≤ 1.

Thus using the same argument as in Case 1, we have µ(f) = 1, a contradiction.
This contradiction shows that f(z) ≡ g(z). Theorem 1.6 is proved.
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