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THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC

SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL

EQUATIONS

Nan Li and Lianzhong Yang

Abstract. In this paper, we study the transcendental meromorphic so-
lutions for the nonlinear differential equations: fn + P (f) = R(z)eα(z)

and fn +P∗(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where

P (f) and P∗(f) are differential polynomials in f of degree n − 1 with
coefficients being small functions and rational functions respectively, R is

a non-vanishing small function of f , α is a nonconstant entire function,

p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant
polynomials. Particularly, we consider the solutions of the second equa-

tion when p1, p2 are nonzero constants, and degα1 = degα2 = 1. Our

results are improvements and complements of Liao ([9]), and Rong-Xu
([11]), etc., which partially answer a question proposed by Li ([7]).

1. Introduction

Let f(z) be a transcendental meromorphic function in the complex plane C.
We assume that the reader is familiar with the standard notations and main
results in Nevanlinna theory (see [4, 6, 12]). Throughout this paper, the term
S(r, f) always has the property that S(r, f) = o(T (r, f)) as r → ∞, possibly
outside a set E (which is not necessarily the same at each occurrence) of finite
linear measure. A meromorphic function a(z) is said to be a small function
with respect to f(z) if and only if T (r, a) = S(r, f). In addition, N1)(r, 1/f)
and N(2(r, 1/f) are used to denote the counting functions corresponding to
simple and multiple zeros of f , respectively.

In the past few decades, many scholars, see [7–10] etc., focus on the solutions
of the nonlinear differential equations of the form

(1) fn + P (f) = h,
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where P (f) denotes a differential polynomial in f of degree at most n− 2, and
h is a given meromorphic function.

In 2015, Liao [9] investigated the forms of meromorphic solutions of the
equation (1) for specific h, and obtained the following result.

Theorem A. Let n ≥ 2 and P (f) be a differential polynomial in f of degree d
with rational functions as its coefficients. Suppose that p is a non-zero rational
function, α is a non-constant polynomial and d ≤ n − 2. If the following
differential equation

fn + P (f) = p(z)eα(z)(2)

admits a meromorphic function f with finitely many poles, then f has the
following form f(z) = q(z)er(z) and P (f) ≡ 0, where q(z) is a rational function
and r(z) is a polynomial with qn = p, nr(z) = α(z). In particular, if p is a
polynomial, then q is a polynomial, too.

If the condition d ≤ n−2 is omitted, then the conclusions in Theorem A can
not hold. For example, f0(z) = ez−1 is a solution of the equation f2+f ′+f =
e2z, here n = 2 and d = 1 = n− 1. So it is natural to ask what will happen to
the solutions of the equation (2) when d = n− 1? In this paper, we study this
problem and obtain the following result, which is a complement of Theorem A.

Theorem 1.1. Let n ≥ 2 be an integer and P (f) be a differential polynomial
in f of degree n−1 with coefficients being small functions. Then for any entire
function α and any small function R, if the equation

(3) fn + P (f) = R(z)eα(z)

possesses a meromorphic solution f with N(r, f) = S(r, f), then f has the
following form:

f(z) = s(z)eα(z)/n + γ(z),

where s and γ are small functions of f with sn = R.

The following Example 1 shows that the case in Theorem 1.1 occurs.

Example 1. f0 = ez + 1 is a solution of the following equation

f3 − 2ff ′ − (f ′)2 − f = e3z.

Here, P (f) = −2ff ′ − (f ′)2 − f , n = 3, and degP (f) = 2 = n− 1.

In 2011, Li [7] considered to find all entire solutions of the equation (1) for
h = p1e

α1z + p2e
α2z, where α1 and α2 are distinct constants, and obtained the

following result.

Theorem B. Let n ≥ 2 be an integer, P (f) be a differential polynomial in f of
degree at most n−2 and α1, α2, p1, p2 be nonzero constants satisfying α1 6= α2.
If f is a transcendental meromorphic solution of the following equation

fn(z) + P (f) = p1e
α1z + p2e

α2z(4)

satisfying N(r, f) = S(r, f), then one of the following relations holds:
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(1) f = c0 + c1e
α1z
n ;

(2) f = c0 + c2e
α2z
n ;

(3) f = c1e
α1z
n + c2e

α2z
n and α1 + α2 = 0,

where c0(z) is a small function of f and constants c1 and c2 satisfy cn1 = p1
and cn2 = p2, respectively.

For further study, Li [7] proposed the following question:

Question 1. How to find the solutions of the equation (4) under the condition
degP (f) = n− 1?

For the case α2 = −α1, Li [7] has already given the detailed forms of the
entire solutions of the equation (4) when degP (f) = n−1; For the case α2 = α1,
(4) can be reduced to fn +P (f) = (p1 + p2)eα1z, then we can get the forms of
entire solutions by using Theorem 1.1. So it’s natural to ask: what will happen
when α2 ± α1 6= 0.

Chen and Gao [2] studied the above question, and obtained the following
result.

Theorem C. Let a(z) be a nonzero polynomial and p1, p2, α1, α2 be nonzero
constants such that α1 6= α2. Suppose that f(z) is a transcendental entire
solution of finite order of the differential equation

f2(z) + a(z)f ′(z) = p1e
α1z + p2e

α2z(5)

satisfying N(r, 1/f) = S(r, f), then a(z) must be a constant and one of the
following relations holds:

(1) f = c1e
α1z
2 , ac1α1 = 2p2 and α1 = 2α2;

(2) f = c2e
α2z
2 , ac2α2 = 2p1 and α2 = 2α1,

where c1 and c2 are constants satisfying c21 = p1 and c22 = p2, respectively.

Later, Rong and Xu [11] improved Theorem C by removing the condition
that f(z) is a finite-order function. In [11], they also considered the general
case in Question 1, and obtained the following result.

Theorem D. Let n ≥ 2 be an integer. Suppose that P (f) is a differential
polynomial in f(z) of degree n − 1 and that α1, α2, p1 and p2 are nonzero
constants such that α1 6= α2. If f(z) is a transcendental meromorphic solution
of the differential equation (4) satisfying N(r, f) = S(r, f), then ρ(f) = 1 and
one of the following relations holds:

(1) f(z) = c1e
α1z
n and cn1 = p1;

(2) f(z) = c2e
α2z
n and cn2 = p2, where c1 and c2 are constants;

(3) T (r, f) ≤ N1)(r, 1/f) + T (r, ϕ) + S(r, f), where ϕ ( 6≡ 0) is equal to

α1α2f
2 − n(α1 + α2)ff ′ + n(n− 1)(f ′)2 + nff ′′.

In this paper, we go on investigating Question 1 and obtain the following
results, which are improvements of Theorems C and D.
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Theorem 1.2. Let n ≥ 2 be an integer. Suppose that P∗(f) is a differential
polynomial in f(z) of degree n − 1 and with rational functions as its coeffi-
cients, α1, α2 be nonconstant polynomials, and p1, p2 be non-vanishing rational
functions. If f(z) is a transcendental meromorphic solution of the following
nonlinear differential equation

(6) fn(z) + P∗(f) = p1(z)eα1(z) + p2(z)eα2(z),

with λf = max{λ(f), λ(1/f)} < σ(f), then σ(f) = degα1 = degα2, and one
of the following relations holds:

(I) α′2 = α′1. In this case, f = s1(z) exp(α1(z)/n) = s2(z) exp(α2(z)/n),
where s1 and s2 are rational functions satisfying sn1 = p1 + p2c2 and
sn2 = 1

c2
p1 + p2, c2 = eα2−α1 is a non-zero constant;

(II) k1α
′
1 = nα′2, where k1 is an integer satisfying 1 ≤ k1 ≤ n − 1. In

this case, f(z) = s3(z)e
α1(z)
n , where s3 is a rational function satisfying

sn3 = p1;
(III) k2α

′
2 = nα′1, where k2 is an integer satisfying 1 ≤ k2 ≤ n − 1. In

this case, f(z) = s4(z)e
α2(z)
n , where s4 is a rational function satisfying

sn4 = p2.

Theorem 1.3. Let n ≥ 2 be an integer. Suppose that P∗(f) is a differential
polynomial in f(z) of degree n − 1 with rational functions as its coefficients,
α1, α2, p1, p2 be nonzero constants such that α1±α2 6= 0. If f(z) is an transcen-
dental meromorphic solution of the following nonlinear differential equation

(7) fn(z) + P∗(f) = p1e
α1z + p2e

α2z,

satisfying N(r, f) = S(r, f), then σ(f) = 1 and there exist two cases:

(I) N
(
r, 1f

)
= S(r, f), then one of the following relations holds: (a) k1α1 =

nα2 and f = s1 exp(α1z/n); (b) k2α2 = nα1 and f = s2 exp(α2z/n),
where k1, k2 are integers satisfying 1 ≤ k1, k2 ≤ n − 1, s1, s2 are con-
stants with sn1 = p1 and sn2 = p2;

(II) N
(
r, 1f

)
6= S(r, f), then T (r, f) ≤ N1)

(
r, 1f

)
+ 1

2T (r, ϕ)+ 1
2N

(
r, 1
ϕ

)
+

S(r, f), where ϕ = α1α2f
2 − n(α1 + α2)ff ′ + n(n− 1)(f ′)2 + nff ′′ 6≡

0, and (1) if ϕ is a nonzero constant, then f(z) = c1e
α1+α2
2n−1 z + c2,

where c1, c2 are nonzero constants, and one of the following relations
holds: (a) (n − 1)α1 = nα2 and f(z) = c1e

α1z/n − c2 (cn1 = p1); (b)
(n − 1)α2 = nα1, and f(z) = c1e

α2z/n − c2, (cn1 = p2); (2) if ϕ is a
nonconstant meromorphic function, then T (r, ϕ) 6= S(r, f). Particu-
larly, suppose n = 2 and ϕ = P (z)eQ(z), where P and Q are non-
vanishing polynomials such that degQ ≥ 1. Then we have degQ = 1
and f2 = d1e

α1z + d2e
α2z −R(z)eQ(z), where d1, d2 are constants, and

R is a non-vanishing polynomial with degR ≤ degP + 2.
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The following Examples 2 and 3 are shown to illustrate the cases (II)(1) and
(II)(2) of Theorem 1.3.

Example 2. f0 = ez − 1 is a solution of the equation

f2 + 2f ′ + f = e2z + ez.

Here α1 = 2, α2 = 1, α1 = 2α2 and ϕ = 2. It implies that case (II)(1)(a)
occurs.

Example 3. f0 = e2z + ez is a solution of

f2 +
1

2
f ′ − 1

2
f ′′ = e4z + 2e3z.

Here α1 = 4, α2 = 3, n = 2, ϕ = 2e2z, and f20 = e4z + 2e3z + e2z. It implies
that case (II)(2) occurs.

2. Preliminary lemmas

The following lemma plays an important role in uniqueness problems of
meromorphic functions.

Lemma 2.1 ([12]). Let fj(z) (j = 1, . . . , n) (n ≥ 2) be meromorphic functions,
and let gj(z) (j = 1, . . . , n) be entire functions satisfying

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then, fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.2 (the Clunie lemma [6]). Let f be a transcendental meromorphic
solution of the equation:

fnP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are polynomials in f and its derivatives with mero-
morphic coefficients {aλ |λ ∈ I} such that m(r, aλ) = S(r, f) for all λ ∈ I. If
the total degree of Q(z, f) as a polynomial in f and its derivatives is at most
n, then m(r, P (z, f)) = S(r, f).

Lemma 2.3 (the Hadamard factorization theorem [12, Theorem 2.7] or [3,
Theorem 1.9]). Let f be a meromorphic function of finite order σ(f). Write

f(z) = ckz
k + ck+1z

k+1 + · · · (ck 6= 0)

near z = 0 and let {a1, a2, . . .} and {b1, b2, . . .} be the zeros and poles of f in
C\{0}, respectively. Then

f(z) = zkeQ(z)P1(z)

P2(z)
,
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where P1(z) and P2(z) are the canonical products of f formed with the non-null
zeros and poles of f(z), respectively, and Q(z) is a polynomial of degree ≤ σ(f).

Remark 1. A well known fact about Lemma 2.3 asserts that λ(f) = λ(zkP1) =
σ(zkP1) ≤ σ(f), λ(1/f) = λ(P2) = σ(P2) ≤ σ(f) if k ≥ 0; and λ(f) = λ(P1) =
σ(P1) ≤ σ(f), λ(1/f) = λ(z−kP2) = σ(z−kP2) ≤ σ(f) if k < 0. So we have
σ(f) = σ(eQ) when λf < σ(f).

The following lemma, which is a slight generalization of Tumura–Clunie type
theorem, is referred to [5, Corollary], can also see [1, Theorem 4.3.1].

Lemma 2.4 ([1, 5]). Suppose that f(z) is meromorphic and not constant in
the plane, that

g(z) = f(z)n + Pn−1(f),

where Pn−1(f) is a differential polynomial of degree at most n − 1 in f , and
that

N(r, f) +N

(
r,

1

g

)
= S(r, f).

Then g(z) = (f + γ)n, where γ is meromorphic and T (r, γ) = S(r, f).

Lemma 2.5 ([7]). Suppose that f is a transcendental meromorphic function,
a, b, c, d are small functions with respect to f and acd 6≡ 0. If

af2 + bff ′ + c(f ′)2 = d,

then

c(b2 − 4ac)
d′

d
+ b(b2 − 4ac)− c(b2 − 4ac)′ + (b2 − 4ac)c′ = 0.

Lemma 2.6. Let α1, α2 and a be nonzero constants, and Pm(z) be a non-
vanishing polynomial. Then the differential equation

y′′ − (α1 + α2)y′ + α1α2y = Pm(z)eaz(8)

has a special solution y∗ = R(z)eaz, where R(z) is a nonzero polynomial with
degR ≤ degPm + 2.

Proof. Set

(9) Pm(z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0, am 6= 0.

We guess

y∗ = R(z)eaz, whereR(z) is a polynomial,

maybe a special solution of (8). By substituting y∗, (y∗)′, (y∗)′′ into the equa-
tion (8), and eliminating eaz, we get

(10) R′′ + (2a− α1 − α2)R′ +
(
a2 − a(α1 + α2) + α1α2

)
R = Pm(z).

We derive the polynomial solution R(z) by using the method of undetermined
coefficients.
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Case I. a 6= α1 and a 6= α2. Then a2 − a(α1 + α2) + α1α2 6= 0. We choose
R(z) is a polynomial with degree m as follow:

R(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0.(11)

By substituting (9) and (11) into (10), comparing the coefficients of the same
power of z at both sides of the equation (10), we get the following system of
linear equations,

am =
(
a2 − a(α1 + α2) + α1α2

)
bm,

am−1 =
(
a2 − a(α1 + α2) + α1α2

)
bm−1 + (2a− α1 − α2)mbm,

ai =
(
a2 − a(α1 + α2) + α1α2

)
bi + (2a− α1 − α2)(i+ 1)bi+1

+ (i+ 2)(i+ 1)bi+2, i = m− 2, . . . , 1, 0.

Since a2 − a(α1 + α2) + α1α2 6= 0, we can solve bi (i = 0, 1, . . . ,m) by using
Cramer’s rule to the above system.

Case II. α1 6= α2, and either a = α1 or a = α2. Then 2a− α1 − α2 6= 0, and
(10) reduces to

R′′ + (2a− α1 − α2)R′ = Pm(z).(12)

We choose R(z) is a polynomial with degree m+ 1 as follow:

R(z) = cm+1z
m+1 + cmz

m + · · ·+ c1z.(13)

By substituting (9) and (13) into (12), comparing the coefficients of the same
power of z at both sides of the equation (12), we get the following system of
linear equations,{

am = (2a− α1 − α2)(m+ 1)cm+1,

ai = (2a− α1 − α2)(i+ 1)ci+1 + (i+ 2)(i+ 1)ci+2, i = m− 1, . . . , 1, 0.

Since 2a − α1 − α2 6= 0, we can solve ci (i = 1, . . . ,m + 1) by using Cramer’s
rule to the above system.

Case III. a = α1 = α2. Then 2a−α1 −α2 = 0, a2 − a(α1 +α2) +α1α2 = 0,
and (10) reduces to

R′′ = Pm(z).(14)

We choose R(z) is another polynomial with degree m+ 2 as follow:

R(z) = dm+2z
m+2 + dm+1z

m+1 + · · ·+ d2z
2.(15)

By substituting (9) and (15) into (14), comparing the coefficients of the same
power of z at both sides of the equation (14), we get the following system of
linear equations, 

am = (m+ 2)(m+ 1)dm+2,

am−1 = (m+ 1)mdm+1,

· · ·
a0 = 2d2.
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Obviously, we can solve di (i = 2, . . . ,m+2) directly from the above system. �

By the proof of [13, Theorem 1.3] (or [6, Lemma 2.4.2.Clunie lemma]), we
get the following lemma, see also [8].

Lemma 2.7 ([8]). Let Pd(f) be a differential polynomial in f of degree d with
small functions of f as coefficients. Then we have

m (r, Pd(f)) ≤ dm(r, f) + S(r, f).

Lemma 2.8. Let n ≥ 2 be integers and Pd(f) denote an algebraic differential
polynomial in f(z) of degree d ≤ n−1 with small functions of f as coefficients.
If p1(z), p2(z) are small functions of f , α1(z), α2(z) are nonconstant entire
functions and if f is a transcendental meromorphic solution of the equation

fn + Pd(f) = p1e
α1 + p2e

α2(16)

with N(r, f) = S(r, f), then we have

T (r, f) = O (T (r, p1e
α1 + p2e

α2)) , T (r, p1e
α1 + p2e

α2) = O(T (r, f)), and

T (r, fn + Pd(f)) 6= S(r, f).

Proof. By Lemma 2.7, we get that

m (r, Pd(f)) ≤ dm(r, f) + S(r, f).(17)

By combining (16), (17) with N(r, f) = S(r, f), we get that

nT (r, f) = T (r, fn) ≤ m (r, p1e
α1 + p2e

α2) +m (r, Pd(f)) + S(r, f)

≤ T (r, p1e
α1 + p2e

α2) + dT (r, f) + S(r, f).

This gives that

(n− d)T (r, f) ≤ T (r, p1e
α1 + p2e

α2) + S(r, f),

i.e.,

T (r, f) = O (T (r, p1e
α1 + p2e

α2)) .(18)

From (17), N(r, f) = S(r, f) and the equation (16), we can also get

T (r, p1e
α1 + p2e

α2) = O(T (r, f)).(19)

Therefore, combining with (16), (18) and (19) we get that T (r, fn+Pd(f)) =
T (r, p1e

α1 + p2e
α2) 6= S(r, f). �

3. Proof of Theorem 1.1

Let f be a transcendental meromorphic solution of the equation (3) with
N(r, f) = S(r, f).

Since

N(r, f) +N

(
r,

1

R(z)eα(z)

)
= S(r, f),
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by Lemma 2.4 we get

(f − γ)n = R(z)eα(z), T (r, γ) = S(r, f).

Thus we have

f = s(z)eα(z)/n + γ(z),

where s and γ are small functions of f with sn = R.

4. Proof of Theorem 1.2.

Let f be a transcendental meromorphic solution of the equation (6) with
λf < σ(f). Then f is of regular growth, and we have

N(r, f) = S(r, f), and N(r, 1/f) = S(r, f).(20)

By combining with Lemma 2.8, we have

(21) T (r, fn + P∗(f)) 6= S(r, f),

and

σ(f) = σ(p1e
α1 + p2e

α2) = max{degα1,degα2}.(22)

Therefore, by Lemma 2.3 and Remark 1, we can factorize f(z) as

f(z) =
d1(z)

d2(z)
eg(z) = d(z)eg(z),(23)

where g is a polynomial with deg g = σ(f) = max{degα1,degα2} ≥ 1, d1 and
d2 are the canonical products formed by zeros and poles of f with σ(d1) =
λ(f) < σ(f) and σ(d2) = λ(1/f) < σ(f).

Next we assert that degα1 = degα2. Otherwise, we have degα1 6= degα2.
Suppose that degα1 < degα2, then T (r, eα1) = S(r, eα2). From Lemma 2.8,

we get

(1 + o(1))T (r, eα2) = T (r, p1e
α1 + p2e

α2) ≤ K1T (r, f), K1 > 0,

which means that a small function of eα2 is also a small function of f . So we
have T (r, eα1) = S(r, f). We rewritten (6) as follow:

(24) fn(z) + P∗(f)− p1eα1 = p2e
α2 .

Therefore, by using Theorem 1.1, we get that f = s0(z) exp(α2(z)/n) + t0(z),
where s0, t0 are small functions of f with sn0 = p2. If t0 6≡ 0, then combining
(20) with Nevanlinna’s Second Main Theorem, we have

T (r, f) ≤ N
(
r,

1

f − t0

)
+N

(
r,

1

f

)
+N(r, f) + S(r, f) = S(r, f),

a contradiction. So we have t0 ≡ 0. Moreover, we also have that s0 is a
rational function because of the fact that p2 is a rational function. Substituting
f = s0(z) exp(α2(z)/n) into (24), we get that

p1e
α1 = P∗(f) = Rn−1e

n−1
n α2 + · · ·+R1e

1
nα2 +R0,
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where R0, R1, . . . , Rn−1 are rational functions. By using Lemma 2.1 and
degα2 > degα1 > 0, we get that p1 ≡ 0, a contradiction.

Suppose that degα1 > degα2, we can also get a contradiction as in the case
degα1 < degα2.

Therefore, degα1 = degα2. By combining with (22) and (23), we have
σ(f) = deg g = degα1 = degα2, and S(r, f) = S(r, eα1) = S(r, eα2).

Case 1. (α2 − α1)′ = 0. Then α2 − α1 is a constant, by the equation (6),
we get

fn(z) + P∗(f) = (p1 + p2c2)eα1 =

(
1

c2
p1 + p2

)
eα2 ,

where c2 = eα2−α1 is a non-zero constant. Obviously, from (21) we have that
p1 + p2c2 6= 0 and 1

c2
p1 + p2 6= 0. Therefore, by using Theorem 1.1, we get that

f = s1(z) exp(α1(z)/n) + t1(z) = s2(z) exp(α2(z)/n) + t2(z), where s1, t1, s2, t2
are small functions of f with sn1 = p1 + p2c2 and sn2 = 1

c2
p1 + p2. Combining

(20) with Nevanlinna’s Second Main Theorem, we have t1 ≡ 0 and t2 ≡ 0.
From p1, p2 are rational functions, we have s1 and s2 are rational functions.
This belongs to Case I in Theorem 1.2.

Case 2. (α2 − α1)′ 6= 0. By differentiating both sides of (6), we have

nfn−1f ′ + P ′∗(f) = (p′1 + p1α
′
1)eα1 + (p′2 + p2α

′
2)eα2 .(25)

Obviously, we have that p′1 + p1α
′
1 6≡ 0 and p′2 + p2α

′
2 6≡ 0. Otherwise, we

will get that p1 = c0e
−α1 and p2 = c1e

−α2 , where c0, c1 ∈ C \ {0}, which
contradict with the facts that α1, α2 are nonconstant polynomials, and p1, p2
are non-vanishing rational functions.

By eliminating eα2 from equations (6) and (25), we have

(p′2 + p2α
′
2)fn − np2fn−1f ′ +Q1(f) = A1e

α1 ,(26)

where

A1 = p1 (p′2 + p2α
′
2)− p2 (p′1 + p1α

′
1) ,(27)

and

Q1(f) = (p′2 + p2α
′
2)P∗ − p2P ′∗.(28)

We assert that A1(z) 6≡ 0. Otherwise, if A1(z) ≡ 0, then we have

(p′2 + p2α
′
2) p1 = p2 (p′1 + p1α

′
1) .

Therefore

p2e
α2 = c3p1e

α1 , c3 ∈ C \ {0}.(29)

So we get α2−α1 is a constant, a contradiction with the assumption (α2−α1)′ 6=
0. Therefore, A1(z) 6≡ 0.

By differentiating (26), we have

(p′2 + p2α
′
2)′fn + np2α

′
2f
n−1f ′ − np2(n− 1)fn−2(f ′)2

− np2fn−1f ′′ +Q′1(f) = (A′1 +A1α
′
1)eα1 .(30)
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By eliminating eα1 from equations (26) and (30), we obtain

fn−2ϕ = Q(f),(31)

where

ϕ = ((A′1 +A1α
′
1)(p′2 + p2α

′
2)−A1(p′2 + p2α

′
2)′) f2 + n(n− 1)p2A1(f ′)2

− np2 (A′1 +A1(α′1 + α′2)) ff ′ + np2A1ff
′′(32)

and

Q(f) = A1Q
′
1(f)− (A′1 +A1α

′
1)Q1(f).(33)

Next we discuss two cases.

Subcase 2.1. Q(f) ≡ 0. Then by (31), we have ϕ ≡ 0, i.e.,

((A′1 +A1α
′
1)(p′2 + p2α

′
2)−A1(p′2 + p2α

′
2)′) f2

= np2 (A′1 +A1(α′1 + α′2)) ff ′ − n(n− 1)p2A1(f ′)2 − np2A1ff
′′.(34)

Next we assert that f has at most finitely many zeros and poles. Otherwise,
f has infinitely many zeros or poles.

Suppose that f has infinitely many zeros. Let z0 be a zero of f with multi-
plicity k but neither a zero nor a pole of the coefficients in the equation (34),
then k ≥ 2 and f(z) = ak(z − z0)k + ak+1(z − z0)k+1 + · · · (ak 6= 0) holds in
some small neighborhood of z0.

If (A′1 +A1α
′
1)(p′2 + p2α

′
2)−A1(p′2 + p2α

′
2)′ ≡ 0, then we have

A′1
A1

+ α′1 =
(p′2 + p2α

′
2)′

p′2 + p2α′2
.

This gives

A1e
α1 = c4(p′2 + p2α

′
2), c4 ∈ C \ {0},

which yields a contradiction with A1(6≡ 0), p′2 + p2α
′
2( 6≡ 0) are rational func-

tions, and α1 is a nonconstant polynomial. Therefore, (A′1+A1α
′
1)(p′2+p2α

′
2)−

A1(p′2 + p2α
′
2)′ 6≡ 0.

Obviously, z0 is a zero with multiplicity 2k of the left side of (34). As to the
right side, the coefficient of (z − z0)2k−2 is

−nkp2A1((n− 1)k + (k − 1))a2k,

which can not equal to zero when n, k ≥ 2. Therefore, z0 is a zero with
multiplicity 2k − 2 of the right side of (34). This is a contradiction.

Suppose that f has infinitely many poles. Let z1 be a pole of f with multi-
plicity m but neither a zero nor a pole of the coefficients in the equation (34),
then f(z) = a−m

(z−z1)m + a−m+1

(z−z1)m−1 + · · · (a−m 6= 0) holds in some small neigh-

borhood of z1. Obviously, z1 is a pole with multiplicity 2m of the left side of
(34). As to the right side, the coefficient of (z − z0)−2(m+1) is

−nmp2A1((n− 1)m+ (m+ 1))a2−m,
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which can not be equal to zero when m ≥ 1 and n ≥ 2. Therefore, z1 is a pole
with multiplicity 2(m+ 1) of the right side of (34). This is a contradiction.

Therefore, f has at most finitely many zeros and poles. So

f(z) = d(z)eg(z),(35)

where g is a polynomial with deg g = degα1 = degα2 ≥ 1, and d is a rational
function.

By substituting (35) into the equation (6), we get

(36) dneng + R̃n−1e
(n−1)g + · · ·+ R̃1e

g + R̃0 = p1e
α1 + p2e

α2 ,

where R̃0, R̃1, . . . , R̃n−1 are rational functions.
If neither ng(z)−α1(z) nor ng(z)−α2(z) are constants, then by Lemma 2.1,

we get that d(z) ≡ 0, which yields a contradiction.
If ng(z)−α1(z) is a constant, then ng(z)−α2(z) is not a constant, otherwise

we have α2(z) − α1(z) is a constant, which yields a contradiction. We set
ng(z)− α1(z) = c5, then (36) can be reduced to

(dn − p1e−c5)eng + R̃n−1e
(n−1)g + · · ·+ R̃1e

g + R̃0 − p2eα2 = 0.

By Lemma 2.1, there must exist some integer k1 (1 ≤ k1 ≤ n− 1) such that

k1g
′ = α′2 and dn − p1e−c5 = 0.

Therefore, by combining with (35) we have

f(z) = s3(z)e
α1(z)
n ,

where sn3 = p1, and k1α
′
1 = nα′2.

If ng(z)−α2(z) is a constant, then ng(z)−α1(z) is not a constant, following
the similar reason, we have

f(z) = s4(z)e
α2(z)
n ,

where sn4 = p2, and k2α
′
2 = nα′1 (1 ≤ k2 ≤ n− 1).

Subcase 2.2. Q(f) 6≡ 0. By combining Logarithmic Derivative Lemma
with (32), we get

m

(
r,
ϕ

f2

)
= S(r, f).(37)

We rewritten (31) as follow:

fn−1
ϕ

f
= Q(f).(38)

From (32), we have

ϕ

f
= ((A′1 +A1α

′
1)(p′2 + p2α

′
2)−A1(p′2 + p2α

′
2)′) f + n(n− 1)p2A1

f ′

f
· f ′

− np2 (A′1 +A1(α′1 + α′2)) f ′ + np2A1f
′′(39)
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is a polynomial in f, f ′ and f ′′ with meromorphic coefficients such that

m (r, (A′1 +A1α
′
1)(p′2 + p2α

′
2)−A1(p′2 + p2α

′
2)′) = S(r, f),

m(r, p2A1) = S(r, f),

m

(
r, p2A1

f ′

f

)
= S(r, f), and m (r, p2 (A′1 +A1(α′1 + α′2))) = S(r, f).

By combining with (38), (39), (33), and Lemma 2.2, we have that

m

(
r,
ϕ

f

)
= S(r, f).(40)

From (20), (32), (37) and (40), we get that

2T (r, f) + S(r, f) = T

(
r,

1

f2

)
= m

(
r,

1

f2

)
+ S(r, f)

≤ m
(
r,
ϕ

f2

)
+m

(
r,

1

ϕ

)
+ S(r, f)

≤ T (r, ϕ) + S(r, f)

≤ m
(
r,
ϕ

f

)
+m(r, f) + S(r, f)

≤ T (r, f) + S(r, f),

which yields a contradiction.

5. Proof of Theorem 1.3.

Let f be a transcendental meromorphic solution of the equation (7) with
N(r, f) = S(r, f). By Lemma 2.8, we have that f is of finite order and

σ(f) = σ(p1e
α1z + p2e

α2z) = 1.(41)

If N(r, 1/f) = S(r, f), by the proof of Theorem 1.2, we can get the conclu-
sion.

Next, we consider the case when N(r, 1/f) 6= S(r, f). By differentiating (7),
we get

nfn−1f ′ + P ′∗(f) = p1α1e
α1z + p2α2e

α2z(42)

By eliminating eα2z from (7) and (42), we have

α2f
n + α2P∗(f)− nfn−1f ′ − P ′∗(f) = p1(α2 − α1)eα1z.(43)

Differentiating (43) yields

nα2f
n−1f ′ + α2P

′
∗ − n(n− 1)fn−2(f ′)2 − nfn−1f ′′ − P ′′∗

= p1α1(α2 − α1)eα1z.(44)

It follows from (43) and (44) that

fn−2ϕ = −P ′′∗ + (α1 + α2)P ′∗ − α1α2P∗,(45)
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where

ϕ(z) = α1α2f
2 − n(α1 + α2)ff ′ + n(n− 1)(f ′)2 + nff ′′.(46)

Next we assert that ϕ(z) 6≡ 0. Otherwise, we have

α1α2f
2 − n(α1 + α2)ff ′ + n(n− 1)(f ′)2 + nff ′′ = 0.(47)

Since N(r, 1/f) 6= S(r, f), let z0 be a zero of f with multiplicity k. By (47) we
have k ≥ 2 and f(z) = ak(z − z0)k + ak+1(z − z0)k+1 + · · · (ak 6= 0) holds in
some small neighborhood of z0. We rewrite (47) as follow,

α1α2f
2 = n(α1 + α2)ff ′ − n(n− 1)(f ′)2 − nff ′′.(48)

Obviously, z0 is a zero with multiplicity 2k of the left side of (48). As to the
right side, the coefficient of (z − z0)2k−2 is

−nk((n− 1)k + (k − 1))a2k,

which can not equal to zero when n, k ≥ 2. Therefore, z0 is a zero with
multiplicity 2k− 2 of the right side of (48). This is a contradiction. Therefore,
ϕ(z) 6≡ 0.

From (45) and (46), by using Lemma 2.2 and Logarithmic Derivative Lemma,
we have

m

(
r,
ϕ

f

)
= S(r, f), and m

(
r,
ϕ

f2

)
= S(r, f).(49)

From (49), we have

2m

(
r,

1

f

)
= m

(
r,

1

f2

)
≤ m

(
r,
ϕ

f2

)
+m

(
r,

1

ϕ

)
≤ m

(
r,

1

ϕ

)
+ S(r, f).(50)

By (46), we have

N

(
r,

1

f

)
= N1)

(
r,

1

f

)
+N(2

(
r,

1

f

)
≤ N1)

(
r,

1

f

)
+N

(
r,

1

ϕ

)
+ S(r, f).(51)

Combining with (50) and (51), we have

T (r, f) ≤ N1)

(
r,

1

f

)
+

1

2
T (r, ϕ) +

1

2
N

(
r,

1

ϕ

)
+ S(r, f).

Case 1. ϕ(z) is a nonzero constant. Since N(r, 1/f) 6= S(r, f), let z1 be
a zero of f with multiplicity m. By (46) we have n(n − 1)(f ′)2(z1) = ϕ 6= 0.
Thus, m = 1, i.e., z1 is a simple zero of f . This gives that all zeros of f are
simple zeros. So we have

N(r, 1/f) = N1)(r, 1/f) + S(r, f).(52)
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By the assumption that ϕ is a nonzero constant, differentiating (46) yields

ϕ′

n
=

2α1α2

n
ff ′ − (α1 + α2)(f ′)2 − (α1 + α2)ff ′′

+ (2n− 1)f ′f ′′ + ff ′′′ = 0.(53)

It follows from (53) and f ′(z1) 6= 0 that

(2n− 1)f ′′(z1)− (α1 + α2)f ′(z1) = 0.

We set

h(z) =
(2n− 1)f ′′(z)− (α1 + α2)f ′(z)

f(z)
.(54)

Subcase 1.1. h(z) ≡ 0. Hence, by (54), we have (2n − 1)f ′′(z) − (α1 +
α2)f ′(z) ≡ 0. Rewrite it as

f ′′

f ′
=
α1 + α2

2n− 1
.

By integrating the above equation, we have

f ′(z) = c̃e
α1+α2
2n−1 z, c̃ ∈ C\{0}.

Integrating the function f ′ yields

f(z) = c1e
α1+α2
2n−1 z + c2,(55)

where c1(6= 0), c2 are two constants. Obviously, c2 6= 0. Otherwise, f has no
zeros, which yields a contradiction. Substitute (55) into the equation (7) yields

cn1 e
n(α1+α2)

2n−1 z + P̃∗(e
α1+α2
2n−1 z) = p1e

α1z + p2e
α2z,

where P̃∗(e
α1+α2
2n−1 z) is a polynomial of e

α1+α2
2n−1 z with degree ≤ n − 1, and with

rational functions as coefficients. By using Lemma 2.1, we have n(α1+α2)
2n−1 = α1,

i.e., (n − 1)α1 = nα2, and cn1 = p1; or n(α1+α2)
2n−1 = α2, i.e., (n − 1)α2 = nα1,

and cn1 = p2.

Subcase 1.2. h(z) 6≡ 0. By (54) and Logarithmic Derivative Lemma, we get
m(r, h) = S(r, f). It follows from (54) that poles of h may occur at zeros and
poles of f . But any simple zero of f is also a zero of (2n−1)f ′′−(α1+α2)f ′, so
by combining with (52), (54) and N(r, f) = S(r, f), we get N(r, h) ≤ N(r, f)+
S(r, f) = S(r, f). Therefore, T (r, h) = m(r, h) +N(r, h) = S(r, f), i.e., h(z) is
a small function of f . We rewrite (54) as follow,

f ′′ = H1f
′ +H2f,(56)

where H1 = α1+α2

2n−1 , and H2 = h
2n−1 . Differentiating (56) yields

f ′′′ = (H2
1 +H2)f ′ + (H1H2 +H ′2)f.(57)

Substituting (56) and (57) into (53), we get that

A1f +A2f
′ = 0,(58)
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where

A1 = H1H2 +H ′2 − (α1 + α2)H2

and

A2 =
2α1α2

n
− (α1 + α2)H1 + 2nH2 +H2

1 .

Suppose that A1 6≡ 0, then by (52), (58) and T (r, h) = S(r, f), we have

N

(
r,

1

f

)
= N1)

(
r,

1

f

)
+S(r, f) ≤ N

(
r,

1

A2

)
+N(r,A1) +S(r, f) = S(r, f),

a contradiction with the assumption that N(r, 1/f) 6= S(r, f). Therefore, com-
bining with (58) we have A1 ≡ 0, and A2 ≡ 0. That is

α1 + α2

2n− 1

h

2n− 1
+

h′

2n− 1
− (α1 + α2)

h

2n− 1
≡ 0,

2α1α2

n
− (α1 + α2)2

2n− 1
+

(
α1 + α2

2n− 1

)2

+
2nh

2n− 1
≡ 0,

which yields a contradiction since n ≥ 2, h 6≡ 0 and α1 + α2 6= 0.

Case 2. ϕ(z) is a nonconstant small function of f . Differentiating (46) gives

(59) ϕ′ = 2α1α2ff
′−n(α1+α2)(f ′)2−n(α1+α2)ff ′′+n(2n−1)f ′f ′′+nff ′′′.

It follows from (46) and (59) that

α1α2ϕ
′f2 − [n(α1 + α2)ϕ′ + 2α1α2ϕ] ff ′

+ n [(n− 1)ϕ′ + (α1 + α2)ϕ] (f ′)2(60)

+ n [(α1 + α2)ϕ+ ϕ′] ff ′′ − n(2n− 1)ϕf ′f ′′ − nϕff ′′′ = 0.

Since N(r, 1/f) 6= S(r, f) and T (r, ϕ) = S(r, f), let z2 be a zero of f , which
is neither a zero of ϕ nor a pole of the coefficients in (60), with multiplicity l,
then by (46) we have l = 1, i.e., z2 is a simple zero of f . And it follows from
(60) that z2 is also a zero of [(n− 1)ϕ′ + (α1 + α2)ϕ] f ′ − (2n− 1)ϕf ′′.

We set

g =
(2n− 1)ϕf ′′ − [(n− 1)ϕ′ + (α1 + α2)ϕ] f ′

f
.(61)

Subcase 2.1. g(z) 6≡ 0. Then by combining (61) with Logarithmic Deriva-
tive Lemma, N(r, f) = S(r, f), and T (r, ϕ) = S(r, f), we have

T (r, g) = O

(
m(r, ϕ) +N

(
r,

1

ϕ

)
+N(r, ϕ) +N(r, f)

)
+ S(r, f) = S(r, f),

i.e., g is a small function of f . We rewrite (61) as follow,

f ′′ = t1f
′ +

g

(2n− 1)ϕ
f, where t1 =

1

2n− 1

(
(n− 1)

ϕ′

ϕ
+ α1 + α2

)
.(62)



ON SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS II 811

Differentiating (62) gives that

f ′′′ =

(
t21 + t′1 +

g

(2n− 1)ϕ

)
f ′ +

1

2n− 1

(
t1
g

ϕ
+

(
g

ϕ

)′)
f.(63)

By substituting (62) and (63) into (60), combining with ϕ 6≡ 0, we get

B1f = B2f
′,(64)

where

B1 = α1α2
ϕ′

ϕ
+ n

(
α1 + α2 +

ϕ′

ϕ

)
g

(2n− 1)ϕ
− n

2n− 1

((
g

ϕ

)′
+ t1

g

ϕ

)
,

and

B2 = n(α1 +α2)

(
ϕ′

ϕ
− t1

)
+ 2α1α2−n

ϕ′

ϕ
t1 +

ng

ϕ
+n

(
t′1 +

g

(2n− 1)ϕ
+ t21

)
.

If B2 6≡ 0, then from (64) and f is transcendental, we have B1 6≡ 0. Since
N(r, 1/f) 6= S(r, f), T (r, ϕ) = S(r, f), and T (r, g) = S(r, f), let z3 be a zero of
f with multiplicity q, which is neither a zero nor a pole of B1 and B2. Then z3
is a zero with multiplicity q of the left side of (64), but a zero with multiplicity
q−1 of the right side, which yields a contradiction. Therefore, we have B2 ≡ 0
and B1 ≡ 0, i.e.,

(65)

(
g

ϕ

)′
=

(
2(n− 1)

2n− 1
(α1 + α2) +

n

2n− 1
γ

)
g

ϕ
+

2n− 1

n
α1α2γ,

and

− 2n

2n−1

g

ϕ
= (α1 + α2)γ +

2

n
α1α2 −

1

2n−1
(α1 + α2 + γ)(α1 + α2 + (n− 1)γ)

+
1

(2n−1)2
(α1 + α2 + (n− 1)γ)2 +

n− 1

2n−1
γ′,(66)

where γ = ϕ′

ϕ .

Substituting (62) into (46),

ϕ(z) = af2 + bff ′ + n(n− 1)(f ′)2.

where

a = α1α2 +
n

2n− 1

g

ϕ
, and b =

n(n− 1)

2n− 1
(γ − 2(α1 + α2)) .

If a 6≡ 0, then by Lemma 2.5, we have

n(n− 1)(b2 − 4an(n− 1))
ϕ′

ϕ
+ b(b2 − 4an(n− 1))

− n(n− 1)(b2 − 4an(n− 1))′ = 0.(67)
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Suppose that b2 − 4an(n− 1) 6≡ 0. It follows from (67) that

2n
ϕ′

ϕ
= (2n− 1)

(b2 − 4an(n− 1))′

b2 − 4an(n− 1)
+ 2(α1 + α2).(68)

By integration, we see that there exists a c5 ∈ C \ {0} such that

e2(α1+α2)z = c5ϕ
2n(b2 − 4an(n− 1))−(2n−1),

which implies e2(α1+α2)z ∈ S(r, f), then α2 = −α1, a contradiction.
Suppose that b2 − 4an(n− 1) ≡ 0. Then we have

(69)
n(n− 1)

(2n− 1)2
(γ − 2(α1 + α2))

2
= 4

(
α1α2 +

n

2n− 1

g

ϕ

)
.

Differentiating (69) yields

n− 1

2n− 1
(γ − 2(α1 + α2)) γ′ = 2

(
g

ϕ

)′
.(70)

Differentiating (66) yields

(71) 2

(
g

ϕ

)′
=

2(n− 1)

2n− 1
γγ′ − (2n+ 1)(n− 1)

(2n− 1)n
(α1 + α2)γ′ − n− 1

n
γ′′.

Combining with (70) and (71), we obtain that

nγγ′ = (α1 + α2)γ′ + (2n− 1)γ′′.(72)

We assert that γ′ 6≡ 0. Otherwise, by γ′ ≡ 0 and ϕ is nonconstant we have

ϕ′

ϕ
= c6, c6 ∈ C \ {0}.

Then

ϕ = c7e
c6z, c7 ∈ C \ {0},

which contradicts with the assumption that ϕ is a nonconstant small function
of f .

Therefore, (72) gives that

α1 + α2 = nγ − (2n− 1)
γ′′

γ′
.(73)

Thus

c8e
(α1+α2)z = ϕn

((
ϕ′

ϕ

)′)−(2n−1)
, c8 ∈ C \ {0},

which implies that e(α1+α2)z ∈ S(r, f), then α2 = −α1, a contradiction.
If a ≡ 0, that is g

ϕ = − 2n−1
n α1α2. By substituting it into (65), we get

ϕ′

ϕ
= 2 (α1 + α2) .
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So we have

ϕ = c9e
2(α1+α2)z, c9 ∈ C \ {0},

which implies that e2(α1+α2)z ∈ S(r, f), then α2 = −α1, a contradiction.

Subcase 2.2. g(z) ≡ 0. Hence, by (61), we have

(2n− 1)ϕf ′′ − [(n− 1)ϕ′ + (α1 + α2)ϕ] f ′ ≡ 0.

Rewrite it as

f ′′ = t1f
′.(74)

Differentiating (74) yields

f ′′′ =
(
t21 + t′1

)
f ′.(75)

By substituting (74) and (75) into (60), combining with ϕ 6≡ 0, we get

B̃1f = B̃2f
′,(76)

where

B̃1 = α1α2
ϕ′

ϕ
,

and

B̃2 = n(α1 + α2)

(
ϕ′

ϕ
− t1

)
+ 2α1α2 − n

ϕ′

ϕ
t1 + n

(
t′1 + t21

)
.

By a similar method as in subcase 2.1, we have B̃1 ≡ 0 and B̃2 ≡ 0. Thus
ϕ′ ≡ 0, which yields that ϕ is a constant, a contradiction.

Case 3. n = 2 and ϕ(z) = P (z)eQ(z), where P, Q are nonvanishing poly-
nomials and Q is non-constant. By (41) and (46), we get σ(ϕ) ≤ σ(f) = 1,
combining with degQ ≥ 1, we have degQ = σ(ϕ) = 1. Let Q(z) = az + b,
where a( 6= 0), b are constants, then ϕ = ebPeaz. By (45) we get that

P ′′∗ − (α1 + α2)P ′∗ + α1α2P∗ = −ebP (z)eaz.(77)

From Lemma 2.6 and the theory of ordinary differential equations, the gen-
eral solutions of the equation (77) can be represented in the form

P∗ = c10e
α1z + c11e

α2z +R(z)eQ(z),(78)

where c10, c11 are constants, and R is a polynomial with degR ≤ degP + 2.
By combining with (7), we get

f2 = d1e
α1z + d2e

α2z −R(z)eQ(z),

where d1 = p1 − c10, and d2 = p2 − c11.
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