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ZERO DISTRIBUTION OF SOME DELAY-DIFFERENTIAL

POLYNOMIALS

Ilpo Laine and Zinelaabidine Latreuch

Abstract. Let f be a meromorphic function of finite order ρ with few

poles in the sense Sλ(r, f) := O(rλ+ε) + S(r, f), where λ < ρ and ε ∈
(0, ρ − λ), and let g(f) :=

∑k
j=1 bj(z)f

(kj)(z + cj) be a linear delay-

differential polynomial of f with small meromorphic coefficients bj in the

sense Sλ(r, f). The zero distribution of fn(g(f))s − b0 is considered in

this paper, where b0 is a small function in the sense Sλ(r, f).

1. Introduction

In this paper, we use key notions of the Nevanlinna theory and related
results, as to those, we refer the reader to [6, 7, 9]. A meromorphic function α
is said to be a λ-small function of a meromorphic function f of finite order ρ,
if there exists λ < ρ, such that for any ε ∈ (0, ρ− λ),

(1) T (r, α) = O(rλ+ε) + S(r, f),

outside a possible exceptional set F of finite logarithmic measure. Here, S(r, f)
is any quantity that satisfies S(r, f) = o(T (r, f)) as r →∞ outside a set F . For
the sake of simplicity, the right hand side in (1) will be denoted by Sλ(r, f). In
addition, we say that f has few poles in the sense of (1), if N(r, f) = Sλ(r, f).

The first author studied in [8] the zero distribution of fn(h(f))s− b0, where
n, s are positive integers, b0 is a λ-small function of f , and h(f) is a shift
polynomial given by

h(f)(z) :=

k∑
j=1

bj(z)f(z + cj),

where bj are λ-small functions of f and cj are complex numbers. A similar
problem had been considered in [13] for fg(f) − b0, where b0 is a non-zero

Received January 17, 2020; Revised June 12, 2020; Accepted August 21, 2020.

2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. Meromorphic functions, delay-differential polynomial, shifts, zero

distribution.
The first author has been partially supported by The Academy of Finland project no.

286877. The second author has been supported by the Directorate General for Scientific
Research and Technological Development (DGRSDT), Algeria.

c©2020 Korean Mathematical Society

1541



1542 I. LAINE AND Z. LATREUCH

polynomial, and g(f) is a delay-differential polynomial given by

(2) g(f) :=

k∑
j=1

bj(z)f
(kj)(z + cj),

where bj are small functions of f in the sense T (r, bj) = S(r, f), cj are complex
numbers and kj are non-negative integers.

Our purpose is to improve and extend the results in [8, 13] for meromor-
phic function f with N(r, f) = Sλ(r, f) by considering the zero distribution of
fn(g(f))s−b0, where b0 is a λ-small function of f , and g(f) is a delay-differential
polynomial given in (2) with coefficients bj being λ-small functions of f . In
particular, we generalize some other results in [1, 4, 10,11] and [3, Chapter 4].

The rest of the paper is organized as follows. Section 2 contains the results
concerning the zero distribution of fn(g(f))s − b0 in case b0 6= 0, while the
results related to the case b0 = 0 are given in Section 3. The lemmas needed
for proving the main results are presented in Section 4, and proofs for the main
results are given in Sections 5 and 6.

2. The case b0 6= 0

Our starting point is the following two examples that show the incomplete-
ness of [8, Theorem 4.4] and [13, Theorem 1.1]. The first example shows that
some exceptional cases may occur in [8, Theorem 4.4].

Example 2.1. Let g1(f) ≡ 1 and g2(f) = f(z+πi), with f(z) = ez + 1. Then

fg1(f)− 1 = ez and fg2(f)− 1 = −e2z

have no zeros.

Regarding [13, Theorem 1.1], we find that an exceptional case may occur as
shown by the following example.

Example 2.2. Let f(z) = ez/2 + e−z/2 and let the delay-differential polyno-
mials

g1(f) :=
1

2
f(z + 4πi) + f ′(z), g2(f) :=

1

2
f(z + 4πi)− f ′(z).

Then,

fg1(f)− 1 = ez and fg2(f)− 1 = e−z

have no zeros.

Due to the above examples, we tried to complete [8, Theorem 4.4] and [13,
Theorem 1.1]. In fact, we proved the following theorem which extends and
completes these results.

Theorem 2.3. Let f be a transcendental meromorphic function of finite order
ρ with N(r, f) = Sλ(r, f), b0 be a non-vanishing λ-small function of f and
g1(f), g2(f) be non-vanishing linear delay-differential polynomials as in (2)
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with λ-small coefficients of f such that g1(f) 6≡ g2(f). Then for the two func-
tions F1 := fg1(f)−b0 and F2 := fg2(f)−b0, we have max {λ(F1), λ(F2)} = ρ,
except when one of the of the following cases holds:

(i) g1(f) = L1(z)f +M(z)f ′ and g2(f) = L2(z)f −M(z)f ′, where L1, L2

and M are non vanishing λ-small functions of f , and L1 + L2 6≡ 0.
(ii) Only one of gi(f), i = 1, 2, is a λ-small function of f .

If g1 and g2 are shift polynomials, then [13, Theorem 1.1] is correct. More-
over, if both of g1 and g2 are not small functions of f , then [8, Theorem 4.4] is
correct.

The condition g1(f) 6≡ g2(f) cannot be dropped out of Theorem 2.3. For
example, if f(z) = ez + z and gk(f)(z) = 2f (k+1)(z + πi) + f(z) for k = 1, 2,
then f(z)gk(f)(z)− z2 = −e2z has no zeros.

Three recent papers should be mentioned here related to Theorem 2.3: The
paper [12] is considering zeros of expressions of type ff (k) − b. The paper [10]
is involving the shifts f(z+ c1) and f(z+ c2) instead of g1(f) and g2(f). In the
paper [2], iterated differences replace g1(f) and g2(f). Moreover, b0 is taken to
be a non-zero polynomial in [2] and [10].

The next result extends [8, Theorem 2.1]. The proof is a simple modification
of the corresponding proof of [8, Theorem 2.1].

Theorem 2.4. Let f be a transcendental meromorphic function of finite order
ρ with N(r, f) = Sλ(r, f), b0 be a non-vanishing λ-small function of f , g(f) be
a non-vanishing delay-differential polynomial as in (2) with λ-small coefficients
of f , n ≥ 2 and s ≥ 1. Then F := fng(f)s − b0 has sufficiently many zeros to
satisfy λ(F ) = ρ.

The condition N(r, f) = Sλ(r, f) is necessary in Theorem 2.4. For example,
the function f(z) = tan z is of order 1 and N(r, f) = O(r). If g(f)(z) =
f(z + π/2) = − cot z, then F (z) := f2(z)g(f)2(z)− 2 = −1 has no zeros.

During preparing this paper, Z. Huang offered us the following example,
which shows that [8, Theorem 3.1] does not hold always.

Example 2.5. Take f(z) = ez + z and define

g(f)(z) := 2f(z)− f(z + log 2) = z − log 2.

Then, for every integer s ≥ 1, the delay polynomial

F (z) := f(z)g(f)s(z)− z(z − log 2)s = (z − log 2)sez

has finitely many zeros only.

We give the following extension and a complete version of [8, Theorem 3.1].

Theorem 2.6. Let f be a transcendental meromorphic function of finite order
ρ with N(r, f) = Sλ(r, f), b0 be a non-vanishing λ-small function of f and
g(f) be a non-vanishing delay-differential polynomial as in (2) with λ-small
coefficients of f . If s ≥ 2, then F := fg(f)s − b0 satisfies

max{λ(F ), λ(f)} = ρ.
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In particular, if ρ /∈ N, then λ(F ) = λ(f) = ρ.

Example 2.5 illustrates Theorem 2.6 in the case when λ(F ) < ρ and λ(f) =
ρ ∈ N.

If ρ(f) /∈ N, we see that [8, Theorem 3.1] is correct. This leads to ask,
in case ρ(f) ∈ N, what are the conditions on g(f) that ensure λ(F ) = ρ in
Theorem 2.6? To give a partial answer, we consider a particular form of the
delay-differential polynomial g(f), which is given by

(3) g̃(f) :=

n∑
i=0

m∑
j=0

bi,j(z)f
(j)(z + ci),

where bi,j are λ-small functions of f , and bim ≡ 1 for every 0 ≤ i ≤ n. We prove
the following result, which may be seen as another variant of [8, Theorem 3.1],
besides Theorem 2.6.

Theorem 2.7. Let f be a transcendental meromorphic function of finite order
ρ with N(r, f) = Sλ(r, f), b0 be a non-vanishing λ-small function of f and g̃(f)
is given in (3) satisfying

(4) T (r, g̃(f)) 6= Sλ(r, f),

and

(5) T (r, w) = Sλ(r, f)

for every meromorphic solution w of g̃(w) = 0. If s ≥ 2, then F := f(g̃(f))s−b0
satisfies λ(F ) = ρ.

Example 2.5 above shows that Theorem 2.7 could fail without the condi-
tion (4). Meanwhile, the next example shows that Theorem 2.7 could also fail
without the condition (5).

Example 2.8 ([1]). Suppose that f(z) = ez − 2
3e
−z/2 and let

g̃(f)(z) := f ′(z + 4πi)− f(z) = e−z/2.

Clearly T (r, g̃(f)) 6= Sλ(r, f) and the function w = ez is a solution of g̃(w) = 0
without satisfying the condition (5). Finally, we can see that

F (z) := f(z)g̃(f)2(z)− 1 =

(
ez − 2

3
e−z/2

)
e−z − 1 = −2

3
e−3z/2

has no zeros.

3. The case b0 = 0

In this section, we generalize some results from [3, Chapter 4] and [11]. In
[3], the difference operator ∆f has been used instead of g(f), while in [11], g(f)
was considered to be a shift polynomial with constant coefficients.
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Theorem 3.1. Let f be a transcendental meromorphic function of finite order
ρ such that N(r, f) = Sλ(r, f). Let g(f) be a non-vanishing linear delay-
differential polynomial as in (2) with at least two terms and λ-small coefficients
of f . Suppose n ≥ 1 and define F := fng(f). Then

(1) If λ(f) = ρ, then λ(F ) = ρ as well.
(2) If λ(f) < ρ, then λ(F ) < ρ. Furthermore

(i) If λ(f) ≤ ρ− 1, λ < ρ− 1 and ρ 6= 1, then λ(F ) = ρ− 1.
(ii) If ρ− 1 < λ(f) = λ∗ < ρ and λ < λ∗, then λ(F ) = λ∗.

(iii) If λ(f) = λ = 0 and ρ = 1, then λ(F ) = 0.

Remark 3.2. The case (1) in Theorem 3.1 holds for F := fng(f)s, s ≥ 1.

The following example illustrates the case (2) in Theorem 3.1.

Example 3.3. (1) The function ez
2

is of order 2 and has no zeros. Define

g(f)(z) := f(z) + f(z + 1) = ez
2

(e2z+1 + 1).

Then, for any integer n, λ(F ) = 1 = ρ(f)− 1. This illustrates the case (2)-(i)
in Theorem 3.1.

(2) The function f(z) = ez cosh
√
z is an entire function of order 1 and

λ(f) = 1/2. Let

g(f)(z) := f ′′(z) +

(
1

2z
− 2

)
f ′(z) +

(
2− 3

4z

)
f(z) = ez cosh

√
z.

Then, for every integer n, λ(F ) = λ(f) = 1/2. This illustrates the case (2)-(ii)
in Theorem 3.1.

The condition λ < ρ − 1 for Sλ(r, f) is necessary for the case (2)-(i) in

Theorem 3.1. For example, the function f(z) = (ez + 1)ez
2

is of order ρ(f) = 2
and λ(f) = 1. Let

g(f)(z) :=
1

ez + 1
f ′(z)− 2ze4π

2−4πiz

ez + 1
f(z + 2πi) =

ez

ez + 1
ez

2

.

Clearly, the coefficients of g(f) are of growth at most Sλ(r, f), where λ = 1 =

ρ(f)− 1. Then F (z) := f(z)g(f)(z) = e2z
2+z such that λ(F ) = 0 6= ρ(f)− 1.

Theorem 3.4. Let f be a transcendental meromorphic function of finite order
ρ with a finite Borel exceptional value d and N(r, f) = Sλ(r, f). Let g(f) be
a non-constant delay-differential polynomial as in (2) with λ-small coefficients
of f . Defining F := fg(f), the following statements hold:

(i) If d 6= 0 and
k∑

j=1,kj=0

bj(z) 6≡ 0,
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then F (z) has at most one finite Borel exceptional value d∗ 6= 0, which
satisfies

d∗ − F (z)

(d− f(z))2
=
d∗

d2
=

k∑
j=1,kj=0

bj(z).

(ii) If d 6= 0 and
k∑

j=1,kj=0

bj(z) ≡ 0,

then F (z) has no finite Borel exceptional values.
(iii) If d = 0, then 0 is a Borel exceptional value of F (z) as well.

The case (i) of Theorem 3.4 may occur. For example, the function f(z) =
ez + 1 has a Borel exceptional value 1. If g(f) = f(z+πi), then F (z) = 1− e2z

has 1 as a Borel exceptional value as well, and 1−F (z)
(1−f(z))2 = 1.

Remark 3.5. The case (iii) of Theorem 3.4 is in fact a special case of the case
(2) of Theorem 3.1.

The following consequence of Theorem 3.4 generalizes [4, Theorem 1.2].

Corollary 3.6. Under the hypotheses of Theorem 3.4, F (z) has no Borel ex-
ceptional value b such that

b− d2
k∑

j=1,kj=0

bj(z) 6≡ 0.

The following example illustrates Corollary 3.6.

Example 3.7. (1) The function f(z) = ez + 1 has the Borel exceptional value
1. If

g(f)(z) := f(z + πi)− 2f(z) + 4f ′(z) = ez − 1,

then F (z) := f(z)g(f)(z) = e2z − 1, and for every b 6= 1(1− 2) = −1, we have
λ(F − b) = 1.

(2) The function f(z) = ez has 0 as Borel exceptional value. If

g(f)(z) := 2f(z + πi) + 2f ′(z) + f(z) = ez,

then F (z) := f(z)g(f)(z) = e2z, and for every b 6= 0(2 + 1) = 0, we have
λ(F − b) = 1.

Before we state the final result, we recall the definition of the multi-order
exponent of convergence of zeros of f by

λ(2(f) := lim sup
r→∞

log+N(2

(
r, 1f

)
log r

,

where N(2

(
r, 1f

)
denotes the counting function of zeros of f whose multiplici-

ties are not less than 2.
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Theorem 3.8. Let f be a transcendental meromorphic function of finite order
ρ such that λ(2(f) = ρ and that N(r, f) = Sλ(r, f), g(f) be a non-constant
linear delay-differential polynomial as in (2) with λ-small coefficients of f . If
n ≥ 1, then F := fng(f) takes every value a ∈ C infinitely often and such that
λ(F − a) = ρ.

4. Auxiliary results

In this section, we collect the results that are needed for proving the main
results.

Using the same reasoning as in the proof of [7, Lemma 2.4.2], we easily get
the following lemma.

Lemma 4.1. Let f be a transcendental meromorphic solution of finite order ρ
of a differential-difference equation

fnP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are delay-differential polynomials in f with λ-small
coefficients of f . If the total degree of Q(z, f) is ≤ n, then for each ε > 0

m(r, P (z, f)) = O(rρ−1+ε) + Sλ(r, f).

Lemmas 4.2 and 4.3 below are, respectively, slight modifications of [5, The-
orem 3] and [8, Lemma 2.5].

Lemma 4.2. Let f be a transcendental meromorphic function of finite order
ρ, and let g be a λ-small function of f . Then for all z such that |z| /∈ E∪ [0, 1],
where E is of finite logarithmic measure, and for all k > j,∣∣∣∣g(k)(z)g(j)(z)

∣∣∣∣ ≤ |z|(k−j)(λ−1+ε).
Lemma 4.3. Let f be a transcendental meromorphic function of finite order ρ
with N(r, f) = Sλ(r, f), and let g(f) be a non-vanishing linear delay-differential
polynomial with λ-small coefficients of f . If n ≥ 1 and s ≥ 1, then we have
ρ(fng(f)s) = ρ.

The following lemma is the complete version of [8, Proposition 4.1].

Lemma 4.4. Let f be a transcendental meromorphic function of finite order
ρ with N(r, f) = Sλ(r, f), b0 be a non-vanishing λ-small function of f and
g1(f), g2(f) be non-vanishing linear delay-differential polynomials as in (2)
with λ-small coefficients of f such that g1(f) 6≡ g2(f). Suppose that

(6) fgj(f) = b0 + βje
hj , j = 1, 2,

where β1, β2 are λ-small functions of f , and h1, h2 are polynomials. Then,

deg h1 = deg h2 = ρ.
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Furthermore, if deg(h1 + h2) < ρ, then the delay-differential polynomials g1(f)
and g2(f) reduce to

g1(f) = L1(z)f +M(z)f ′ and g2(f) = L2(z)f −M(z)f ′,

where L1, L2, M are non-vanishing λ-small functions of f , and L1 + L2 6≡ 0.

Proof. As to the claims deg h1 = deg h2 = ρ, the proof in [8] may be repeated,
verbatim.

Now, suppose that deg(h1 + h2) < ρ. Differentiating (6) and eliminating
exponentials, we obtain

f ′

f
+
gj(f)′

gj(f)
−
β′j
β
− h′j = Aj

1

fgj(f)
,(7)

where

Aj = b0

(
b′0
b0
−
β′j
βj
− h′j

)
.

Moreover, A1 and A2 are not vanishing identically by the reasoning used in the
proof of [8, Theorem 2.1]. From (7), we obtain

m

(
r,

1

fgj(f)

)
= Sλ(r, f), j = 1, 2

and

N(2

(
r,

1

fgj(f)

)
= Sλ(r, f), j = 1, 2,

where N(2(r, ·) stands for the non-simple zeros. Therefore

T (r, fgj(f)) = N1)

(
r,

1

fgj(f)

)
+ Sλ(r, f), j = 1, 2,

where N1)(r, .) counts the simple zeros only.
Clearly, we also have N(2(r, 1/f) = Sλ(r, f), hence

N(r, 1/f) = N1)(r, 1/f) + Sλ(r, f).

Making use of the identity 1
f2 =

gj(f)
f

1
fgj(f)

, we obtain m(r, 1/f) = Sλ(r, f).

Assuming, as we may, that ρ− 1 ≤ λ < ρ, we obtain

T (r, f) = N1)(r, 1/f) + Sλ(r, f).

Writing now (7) in the form

f ′gj(f) + f(gj(f))′ −
(
β′j
βj

+ h′j

)
fgj(f) = Aj , j = 1, 2,(8)

we observe that f ′(z0)gj(f)(z0) − Aj(z0) = 0 as soon z0 is a simple zero of f ,
outside of all possible zeros and poles of Aj , βj . Since (8) holds for both of
j = 1, 2, it is easy to see that all possible poles of

H =
A1g2(f)−A2g1(f)

f
(9)
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are multiple except perhaps at the shift values f(z0 + cj) and the poles of Aj ,
hence N(r,H) = Sλ(r, f). Moreover, m(r,H) = Sλ(r, f), hence, T (r,H) =
Sλ(r, f).

Since deg(h1 + h2) ≤ ρ− 1 ≤ λ, we have T (r, eh1+h2) = O(rλ+ε). Moreover,
for ϕ := β1β2e

h1+h2 , we have T (r, ϕ) = Sλ(r, f).
Consider now a simple zero, say z0, of f . At the same time, we may assume

that b0, β1, β2, ϕ as well as all coefficients of g1(f), g2(f) are non-zero and
finite at z0. Write now (6) in the form

fg1(f) = b0 + β1e
h1 , fg2(f) = b0 +

ϕ

β1
e−h1 .

Thus, we obtain

eh1 = − b0
β1

= − ϕ

b0β1
and so b20 = ϕ at z0. If b20 − ϕ is not vanishing identically, we conclude that

N1)(r, 1/f) ≤ N
(
r,

1

b20 − ϕ

)
+ Sλ(r, f) = Sλ(r, f).

Hence, T (r, f) = Sλ(r, f), resulting in a contradiction. It remains to consider
the case that b20 ≡ ϕ. We have

b20 = β1β2e
h1+h2 = (fg1(f)− b0)(fg2(f)− b0),

resulting in

fg1(f)g2(f) = b0(g1(f) + g2(f)).(10)

But now, from

g1(f)g2(f) = b0
g1(f) + g2(f)

f
,

we see that m(r, g1(f)g2(f)) = Sλ(r, f), hence, T (r, g1(f)g2(f)) = Sλ(r, f), as
well. Denote now ψ := g1(f)g2(f). Making use of (10), we get

b0 + β1e
h1 = fg1(f) =

b0
ψ
g1(f)(g1(f) + g2(f)) =

b0
ψ
g1(f)2 + b0.

Thus we obtain

g1(f)2 =
β1ψ

b0
eh1 .(11)

Similarly,

g2(f)2 =
β2ψ

b0
eh2 ,(12)

and, further (
g1(f)

g2(f)

)2

=
β1
β2
eh1−h2 .

Recalling the identity (9), we now proceed to considering

A1g2(f)−A2g1(f) = Hf.(13)
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If H vanishes identically, we see that(
A1

A2

)2

=

(
g1(f)

g2(f)

)2

=
β1
β2
eh1−h2 ,

hence T (r, eh1−h2) = Sλ(r, f). Therefore, deg(h1 − h2) ≤ ρ − 1. Combining
with deg(h1 + h2) ≤ ρ− 1, we obtain deg h1 < ρ, contradicting deg h1 = ρ.

Now, we need to consider (13), assuming that H does not vanish identically.
Squaring (13), and making use of (11) and (12), we get

f2 =
A2

1

H2

β2ψ

b0
eh2 +

A2
2

H2

β1ψ

b0
eh1 − 2A1A2

H2
ψ.

Multiplying by g1(f)2, making use of (11) and (12) again, and recalling that
f2g1(f)2 = (b0 + β1e

h1)2, an elementary computation results in(
β2
1 −

A2
2

H2

(
β1ψ

b0

)2
)
e2h1 +

(
2b0β1 +

2A1A2β1
H2b0

ψ2

)
eh1

+

(
b20 −

A2
1

H2
ψ2

)
= 0.(14)

Then, we have T (r, eh1) = Sλ(r, f), resulting in a contradiction deg h1 < ρ, pro-
vided not all coefficients in (14) are vanishing identically. Suppose finally that
all coefficients in (14) vanish. Then we immediately observe that A1 + A2 ≡ 0
and the equation (13) becomes

g1(f) = κ(z)f − g2(f),(15)

where κ = H
A1

. Differentiating (15), we get

(g1(f))′ = κ′(z)f + κ(z)f ′ − (g2(f))′.(16)

Substituting (15) and (16) into (8) for j = 1, we obtain(
κ′ − κ

(
β′1
β1

+ h′1

))
f2 + 2κf ′f +

(
β′1
β1

+ h′1

)
fg2(f)

− (g2(f))′f − g2(f)f ′ = A1.(17)

By adding (17) to the equation (8) for j = 2 and keeping in mind A1 +A2 ≡ 0,
we get (

β′2
β2
− β′1
β1

+ (h2 − h1)′
)
g2(f) =

(
κ′ − κ

(
β′1
β1

+ h′1

))
f + 2κf ′.(18)

It’s easy to see that

β′2
β2
− β′1
β1

+ (h2 − h1)′ 6≡ 0 and κ′ − κ
(
β′1
β1

+ h′1

)
6≡ 0.

Otherwise, we get deg(h1 − h2) < ρ and deg h1 < ρ, respectively, which is a
contradiction. Therefore, (18) can be rewritten as

g2(f) = L2(z)f −M(z)f ′,(19)
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where

L2 = −
κ′ − κ

(
β′1
β1

+ h′1

)
β′1
β1
− β′2

β2
+ (h1 − h2)′

, M =
2κ

β′1
β1
− β′2

β2
+ (h1 − h2)′

.

Similarly, we have

g1(f) = L1(z)f +M(z)f ′,(20)

where

L1 =
κ′ − κ

(
β′2
β2

+ h′2

)
β′1
β1
− β′2

β2
+ (h1 − h2)′

.

This completes the proof of Lemma 4.4. �

5. Proofs of theorems of Section 2

The proof of Theorem 2.3 follows, to large extent, the corresponding proof
of [8, Theorem 4.4].

Proof of Theorem 2.3. It suffices to show that the only cases which may occur,
when max{λ(F1), λ(F2)} < ρ, are (i) and (ii).

Suppose that max{λ(F1), λ(F2)} < λ for some λ < ρ. Then

(21) fgj(f)− b0 = βje
hj , j = 1, 2,

where βj are non-vanishing λ-small functions of f and h1, h2 are polynomials.
Therefore, from Lemma 4.4, we have deg h1 = deg h2 = ρ.

Now, if deg(h1 + h2) < ρ, then, from Lemma 4.4, we obtain the exceptional
case (i) in Theorem 2.3.

Next, we consider the case deg(h1 + h2) = ρ. In this case, we show that the
exceptional case (ii) in Theorem 2.3 is the only possible one. To this end, we
proceed as follows.

(a) Suppose that g1(f) and g2(f) both are λ-small functions of f . Then
from the second main theorem of Nevanlinna, we know that

T (r, f) ≤ N(r, f) +N

(
r,

1

f − b0
g1(f)

)
+N

(
r,

1

f − b0
g2(f)

)
+ S(r, f)

= N

(
1
β1

g1(f)

)
+N

(
1
β2

g2(f)

)
+ Sλ(r, f) = Sλ(r, f),

which is impossible.
(b) Suppose that both of g1(f) and g2(f) are not λ-small functions of f .

First, we claim that deg(h1 − h2) = ρ. If this is not the case, that is, deg(h1 −
h2) < ρ, then from (21), we have

f

(
g1(f)− β1

β2
eh1−h2g2(f)

)
= b0

(
1− β1

β2
eh1−h2

)
.(22)
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By Lemma 4.1, we obtain

m

(
r, g1(f)− β1

β2
eh1−h2g2(f)

)
= O(rρ−1+ε) + Sλ(r, f).

Without loss of generality, we may assume that ρ− 1 < λ < ρ. Then

T

(
r, g1(f)− β1

β2
eh1−h2g2(f)

)
= Sλ(r, f).(23)

If g1(f)− β1

β2
eh1−h2g2(f) ≡ 0, then from (22), we get

f(g2(f)− g1(f)) = β2e
h2 − β1eh1 = 0,

which contradicts the assumption g1(f) 6≡ g2(f). Thus g1(f)− β1

β2
eh1−h2g2(f) 6≡

0, and therefore, (22) and (23) yield

T (r, f) = T

r, b0

(
1− β1

β2
eh1−h2

)
g1(f)− β1

β2
eh1−h2g2(f)

 = Sλ(r, f),

which is a contradiction. Thus deg(h1 − h2) = ρ.
Second, recall that the function H defined in (9), i.e.,

(24) H :=
A1(g2(f))−A2(g1(f))

f

is a λ-small function of f , where A1 and A2 are non-vanishing λ-small functions
of f .

Suppose that H is vanishing identically. Then (21) implies that

−β1A2e
h1 + β2A1e

h2 + (A1 −A2)b0 = 0.

Since deg(h1 − h2) = ρ, we see from [14, Theorem 1.51] that all coefficients in
this equation are vanishing identically, which gives a contradiction.

Suppose now that H is not vanishing identically. From here on, we follow
the same reasoning of the proof of [8, Theorem 4.4] omitting most of the details.
From (24), we have

(25) g1(f) =
A1

A2
g2(f)− H

A2
f.

Differentiating (25), substituting g1(f) and (g1(f))′ into (8), and then adding
the result to (8), in the case j = 2, multiplied by −A1/A2, we obtain(

B1H

A2
−
(
H

A2

)′)
f +

(
−2H

A2

)
f ′ −Dg2(f) = 0,

where

D :=
B1A1

A2
−
(
A1

A2

)′
− A1B2

A2
,
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and Bj := β′j/βj + h′j , j = 1, 2. The coefficients here, denoted as T1D for f
and T2D for f ′ (and D for g2(f)) are not vanishing identically, see [8, p. 818].
Hence, we may write (25) in the form

(26) g2(f) = T1f + T2f
′

with λ-small coefficients of f . Differentiating now (26), substituting this ex-
pression and (26) into (8) with j = 2 results in

(27) (T ′1 −B2T1)f2 + (2T1 + T ′2 −B2T2)ff ′ + T2(f ′)2 + T2ff
′′ = A2.

Differentiate (27). By a careful analysis of simple zeros of f at this expression
and at (27), we obtain

(28) f ′′ =
H̃

3A2T2
f − 2A2T1 + 2A2T2 −A′2 −A2B2T2

3A2T2
f ′,

where

(29) H̃ :=
(2A2T1 + 2A2T2 −A′2 −A2B2T2)f ′ + 3A2T2f

′′

f

is a λ-small function of f . To continue, substitute (28) into (27), implying

(30) Q1f
2 +Q2ff

′ + T2(f ′)2 = A2,

where

Q1 := T ′1 −B2T1 + 3
H̃

3A2
and Q2 :=

1

3

(
4T1 + T ′2 − 2T2B2 +

A′2
A2

T2

)
.

Here, in particular, Q2 is not vanishing identically, as one may easily see.
Differentiation of (30) now results in

(31) Q′1f
2 + (2Q1 +Q′2)ff ′ + (Q2 + T ′2)(f ′)2 +Q2ff

′′ + 2T2f
′f ′′ = A′2.

Analyzing simple zeros of f at (27) and (31) we obtain

(32) f ′′ =
R̃

2A2T2
f +

A′2 −A2(Q2 + T ′2)

2A2T2
f ′,

where

R̃ :=
(−A′2 +A2(Q2 + T ′2))f ′ + 2A2T2f

′′

f

is a λ-small function of f . Substitute now (32) into (31) to obtain(
Q′1 +

Q2R̃

2A2T2

)
f2 +

(
2Q1 +Q′2 −

1

2

Q2

T2
(Q2 + T ′2) +

1

2

A′2
A2

Q2 +
R̃

A2

)
ff ′

+
A′2
A2

T2(f ′)2 = A′2.(33)
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Adding now (30) multiplied by −A′2/A2 in (33) results in
(34)(
Q′1+

Q2R̃

2A2T2
−A

′
2

A2
Q1

)
f+

(
2Q1+Q′2−

1

2

Q2

T2
(Q2+T ′2)− 1

2

A′2
A2

Q2+
R̃

A2

)
f ′=0.

Looking at the simple zeros of f at (34) results in an immediate contradiction
unless its coefficients satisfy

(35) Q′1 +
Q2R̃

2A2T2
− A′2
A2

Q1 ≡ 0

and

(36) 2Q1 +Q′2 −
1

2

Q2

T2
(Q2 + T ′2)− 1

2

A′2
A2

Q2 +
R̃

A2
≡ 0.

Eliminate R̃/A2 from (35) and (36) to obtain

T2(4Q1T2 −Q2
2)
A′2
A2

+Q2(4Q1T2 −Q2
2)

− T2(4Q1T2 −Q2
2)′ + T ′2(4Q1T2 −Q2

2) = 0.(37)

We are now approaching to the final reasoning for a contradiction. If (4Q1T2−
Q2

2) does not vanish identically, it is not difficult to conclude that eh1+h2 is
of order less than ρ, a contradiction with the assumption deg(h1 + h2) = ρ.
Therefore, we must have 4Q1T2 = Q2

2. Denoting h1(z) = αzρ+ · · · and h2(z) =
βzρ + · · · , we may repeat the reasoning in [8, pp. 821–822], to see that

lim
|z|→∞

h′1h
′
2

(h′1 + h′2)2
=

αβ

(α+ β)2
=

2

9
.

Solving the equation αβ
(α+β)2 = 2

9 results in either α = 2β or α = 1
2β. We

proceed to considering the case α = 2β. We may now write

eh1(z) = e2βz
ρ

eP1(z), eh2(z) = eβz
ρ

eP2(z),

where P1(z) and P2(z) are two polynomials of degree ρ − 1 at most. Recall
that we have g2(f) = T1f + T2f

′ and

g1(f) =

(
A1

A2
T1 −

H

A2

)
f +

A1

A2
T2f

′.

Therefore,

b0 + β2e
βzρeP2(z) = fg2(f) = T1f

2 + T2f
′f

and

b0 + β1e
2βzρeP1(z) = fg1(f) =

(
A1

A2
T1 −

H

A2

)
f2 +

A1

A2
T2f

′f.

By a simple computation,

g2(f) =
b0
f

+ β2e
P2− 1

2P1

(
1

β1

(
A1

A2
T1 −

H

A2
+
A1

A2
T2
f ′

f
− b0
f2

))1/2

.
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We next show that g2(f) is a small function by computing T (r, T1f + T2f
′).

Indeed,

T (r, T1f + T2f
′) = m(r, T1f + T2f

′) + Sλ(r, f)

=
1

2π

∫
E1

log+ |T1f + T2f
′|dθ +

1

2π

∫
E2

log+ |T1f + T2f
′|dθ

+ Sλ(r, f),

where E1, resp. E2, means the part on the circle of radius r such that |f | ≤ 1,
resp. |f | > 1. Again, we may repeat the reasoning in [8, pp. 823–824], to get

1

2π

∫
E1

log+ |T1f+T2f
′|dθ=Sλ(r, f) and

1

2π

∫
E2

log+ |T1f+T2f
′|dθ=Sλ(r, f).

Thus, we obtain

T (r, g2(f)) = T (r, T1f + T2f
′) = Sλ(r, f),

which is a contradiction. Similarly, for the case α/β=1/2, we obtain T (r, g1(f))
= Sλ(r, f), which is a contradiction too. This shows that the case, when g1(f)
and g2(f) are not λ-small functions of f , is not possible. Thus the case (ii) in
Theorem 2.3 is the only possible case.

This completes the proof of Theorem 2.3. �

Proof of Theorem 2.4. Suppose, contrary to the assertion, that λ(F ) = λ < ρ.
Since N(r, f) = Sλ(r, f), we have N(r, F ) = Sλ(r, f) as well. By the standard
Hadamard representation, we may write

(38) fng(f)s = b0 + βeh,

where β is a non-vanishing λ-small function of f and h is a polynomial of degree
≤ ρ. Actually, deg h = ρ. Indeed, if deg h ≤ µ < ρ, then

T (r, fng(f)s) = O(rµ+ε) + Sλ(r, f),

leading to ρ(f) ≤ max {µ, λ} < ρ, a contradiction with Lemma 4.3. Differenti-
ating now (38) and eliminating eh, we obtain

(39) n
f ′

f
+ s

g(f)′

g(f)
− β′

β
− h′ =

A

fn(g(f))s
,

where A := b′0 − b0
β′

β − b0h
′ cannot vanish identically as shown in [8, p. 811].

Since n ≥ 2 and N(r, f) = Sλ(r, f), the equation (39) gives N(r, 1/f) =
Sλ(r, f). If s ≥ 2, we similarly observe that N(r, 1/g(f)) = Sλ(r, f). By the
second main theorem,

T (r, fng(f)s) ≤ N(r, fng(f)s) +N(r, 1/fng(f)s) +N(r, 1/F ) + S(r, f)

= Sλ(r, f),

contradicting Lemma 4.3.
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It remains to consider the case s = 1. Since f is a meromorphic function of
finite order ρ such that max {N(r, f), N(r, 1/f)} = Sλ(r, f), f may be repre-
sented as f(z) = γ(z)eQ(z), where T (r, γ) = Sλ(r, f) and Q is a polynomial of
degree degQ = ρ. Write now g(f)(z) = G(f)(z)eQ(z), where

T (r,G(f)) = O(rρ−1+ε) + Sλ(r, f).

Hence

N

(
r,

1

g(f)

)
= N

(
r,

1

G(f)

)
= O(rρ−1+ε) + Sλ(r, f).

Recalling N(r, f) = Sλ(r, f), the second main theorem may be applied again
to obtain

T (r, fng(f)) ≤ nN
(
r,

1

f

)
+N

(
r,

1

g(f)

)
+N

(
r,

1

F

)
+N(r, fng(f))+S(r, f)

= O(rρ−1+ε) + Sλ(r, f).

Thus, ρ(fng(f)) ≤ max {ρ− 1, λ}, contradicting Lemma 4.3. �

Proof of Theorem 2.6. Suppose, contrary to the assertion that

max {λ(F ), λ(f)} < ρ.

We may write

(40) f(g(f))s = b0 + βeh,

where β is a non-vanishing λ-small function of f and h is a polynomial of degree
ρ. Differentiating (40) and eliminating eh, we obtain

(41)
f ′

f
+ s

g(f)′

g(f)
− β′

β
− h′ =

b0

(
b′0
b0
− β′

β − h
′
)

f(g(f))s
.

Since s ≥ 2, we conclude from (41) that

(42) N

(
r,

1

g(f)

)
= Sλ(r, f).

By this and (41), we conclude again that

(43) N

(
r,

1

f(g(f))s

)
≤ N

(
r,

1

f

)
+ Sλ(r, f).

By using the second main theorem of Nevanlinna, we get

T (r, f(g(f))s) ≤ N(r, f(g(f))s) +N

(
r,

1

f(g(f))s

)
+N

(
r,

1

F

)
+ S(r, f)

≤ N
(
r,

1

f

)
+ Sλ(r, f).(44)

From (44) and Lemma 4.3, we obtain ρ = ρ(f(g(f))s) ≤ λ(f) < ρ, a contra-
diction.
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Suppose now that ρ /∈ N. Then, clearly, λ(f) = ρ. On the other hand, by
Lemma 4.3 again, we have ρ(F ) = ρ /∈ N. Hence λ(F ) = ρ. �

Proof of Theorem 2.7. As one may clearly see, our reasoning here is to some
part similar to the reasoning applied by Alotaibi in [1].

Suppose, contrary to the assertion that λ(F ) < ρ. On the other hand, since
b0 is a non-vanishing λ-small function of f , we have F = b0F

∗, where

F ∗ :=
1

b0
fg̃(f)s − 1.

Clearly, λ(F ) = λ(F ∗) and ρ(F ) = ρ(F ∗) = ρ. So, in the following, we consider
only F ∗.

Put bi,−1 = bi,m+1 = 0 and since bi,m(z) ≡ 1 for every 0 ≤ i ≤ n, we have

g̃(f) =

n∑
i=0

m∑
j=0

bi,jf
(j)(z + ci) =

n∑
i=0

m+1∑
j=−1

bi,jf
(j)(z + ci).

Using the fact that b′i,m+1 = 0, we have

g̃(f)′ =

n∑
i=0

m∑
j=0

b′i,jf
(j)(z + ci) +

n∑
i=0

m∑
j=0

bi,jf
(j+1)(z + ci)

=

n∑
i=0

m+1∑
j=0

(b′i,j + bi,j−1)f (j)(z + ci).(45)

Since g̃(f) =
∑n
i=0

∑m+1
j=0 bi,jf

(j)(z + ci), we find that w = f solves the delay-
differential equation

(46)

n∑
i=0

m+1∑
j=0

di,jw
(j)(z + ci) = 0,

where

di,j = b′i,j + bi,j−1 −
g̃(f)′

g̃(f)
bi,j , and d0,m+1 = 1

for every 0 ≤ i ≤ n, 0 ≤ j ≤ m+ 1.
Let w = uv, where v = b0/g̃(f)s. By using Leibniz’ rule in (46) and the

convention Ckj = 0 for k > j, we get

n∑
i=0

m+1∑
j=0

di,j(uv)(j)(z + ci) =

n∑
i=0

m+1∑
j=0

di,j

j∑
k=0

Ckj u
(k)(z + ci)v

(j−k)(z + ci)

=

n∑
i=0

m+1∑
j=0

di,j

m+1∑
k=0

Ckj u
(k)(z + ci)v

(j−k)(z + ci) = 0.
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Dividing the right hand side by v(z) we get

0=

n∑
i=0

m+1∑
k=0

u(k)(z + ci)

m+1∑
j=0

Ckj di,j
v(j−k)(z + ci)

v(z)
=

n∑
i=0

m+1∑
k=0

Ai,k(z)u(k)(z + ci),

where, again since Ckj = 0 for k > j,

Ai,k(z) =

m+1∑
j=k

Ckj di,j
v(j−k)(z + ci)

v(z)
.(47)

In particular, this gives

n∑
i=0

Ai,0 =

n∑
i=0

m+1∑
j=0

di,j
v(j)(z + ci)

v(z)

=

n∑
i=0

m+1∑
j=0

(
b′i,j + bi,j−1 −

g̃(f)′

g̃(f)
bi,j

)
v(j)(z + ci)

v(z)

=
g̃(v)′ − g̃(f)′

g̃(f) g(v)

v(z)
.(48)

We claim now that
n∑
i=0

Ai,0 6≡ 0.(49)

To prove this, we suppose the contrary. By using (48), we get

g̃(v)′ =
g̃(f)′

g̃(f)
g̃(v).

We consider two cases:
Case 1: If g̃(v) 6≡ 0, then by simple integration of the above equation, we get

g̃(v) = cg̃(f),

where c is a non-zero constant. Defining H := v−cf , linearity of g̃ implies that
g̃(H) = 0. By assumption, T (r,H) = Sλ(r, f). Further defining G := f + 1

cH,
we see that

v = cG and g̃(f) = g̃

(
f +

1

c
H

)
= g̃(G).

Therefore, T (r,G) = T (r, f)+Sλ(r, f). On the other hand, since v = b0/g̃(f)s,
we get

1 =
c

b0
Gg̃(f)s =

c

b0
Gg̃(G)s.

This leads to T (r,Gg̃(G)s) = Sλ(r, f), which is a contradiction with Lemma
4.3.
Case 2: If g̃(v) ≡ 0, then

Sλ(r, f) = T (r, v) = sT (r, 1/g̃(f)) + Sλ(r, f)



ZERO DISTRIBUTION OF SOME DELAY-DIFFERENTIAL POLYNOMIALS 1559

= sT (r, g̃(f)) + Sλ(r, f),

a contradiction with the condition T (r, g̃(f)) 6= Sλ(r, f).
Returning to our proof now, we have

u =
w

v
=

1

b0
fg̃(f)s = F ∗ + 1.

So F ∗ + 1 solves the linear delay-differential equation

n∑
i=0

m+1∑
k=0

Ai,k(z)u(k)(z + ci) = 0.

Hence
n∑
i=0

m+1∑
k=0

Ai,k(z)F ∗(k)(z + ci) = −
n∑
i=0

Ai,0(z).(50)

From (47) and (42) we deduce that

T (r,Ai,k) = O(rρ−1+ε) + Sλ(r, f).

Since λ(F ∗) < ρ, we may write

F ∗(z) = β∗(z)eh(z),(51)

where T (r, β∗) = Sλ(r, f), and h is a polynomial of degree equal to ρ. Obviously

F ∗(k)(z + ci) = ψk(z + ci)e
h(z+ci),(52)

where ψk (k = 0, . . . ,m + 1) are differential polynomials in β and h. By
substituting (51) and (52) into (50) and since

∑n
i=0Ai,0 6≡ 0, we get

n∑
i=0

m+1∑
k=0

Ai,k(z)ψk(z + ci)∑n
i=0Ai,0(z)

eh(z+ci)−h(z) = −e−h(z).

Hence
T (r, eh) = O(rρ−1+ε) + Sλ(r, f),

resulting in a contradiction deg h = ρ(f) ≤ max {ρ− 1, λ} < ρ. This completes
the proof of Theorem 2.7. �

6. Proofs of results from Section 3

Proof of Theorem 3.1. (1) Suppose that λ(F ) < ρ. Writing F = fng(f) = βeh,
where T (r, β) = Sλ(r, f) and h is a polynomial, we get

n
f ′

f
+

(g(f))′

g(f)
− β′

β
= h′.

If f vanishes at z0, then F (z0) = 0, unless g(f) has a pole at z0. This may
happen at the coefficients of g(f) and the poles of f(z0 + cj) only, contributing
at most by Sλ(r, f). Therefore, λ(f) < ρ, and the claim follows.

(2) In this case, we may write f(z) = τ(z)eαz
ρ

, where α (α 6= 0) is a constant
and τ is a λ-small function of f . Then, of course, f(z+cj) = τ(z+cj)τj(z)e

αzρ ,
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where τj is a meromorphic function of order ρ− 1. Therefore, it is not difficult

to see that g(f) = T (z)eαz
ρ

, where T (z) is a differential polynomial of τ , of its
shifts and of its derivatives. Therefore ρ(T ) ≤ λ, implying that λ(F ) < ρ.

We divide the proof of Part (2)-(i) into three parts:
(a) If λ(f) < ρ − 1, then ρ(F ) = ρ by Lemma 4.3. Write now f(z) =

τ(z)eh(z), where h is a polynomial of degree = ρ ≥ 2, and τ is a λ-small
function of f where λ < ρ− 1. Recalling that

g(f) :=

k∑
j=1

bj(z)f
(kj)(z + cj)

with k ≥ 2, we may write

g(f) =

k∑
j=1

τj(z)f(z + cj) :=

k∑
j=1

bj(z)
f (kj)(z + cj)

f(z + cj)
f(z + cj).

Suppose first, contrary to the claim, that λ(F ) < ρ − 1. Writing, as we may,
F (z) = σ(z)eQ(z), where σ is a λ-small function of f where λ < ρ− 1 and Q is
a polynomial of degree ρ. Therefore, we now have

σ(z) =

k∑
j=1

αj(z)e
βj(z),

where αj(z) = τn(z)τj(z)τ(z + cj) are λ-small functions of f with λ < ρ − 1
and βj(z) = nh(z) + h(z + cj)−Q(z) for every 1 ≤ j ≤ k. Set also,

h(z) = bmz
m + bm−1z

m−1 + · · ·+ b0, bm 6= 0,

where bm, bm−1, . . . , b0 are constants and m = ρ ≥ 2. Hence, for every i 6= j

βi(z)− βj(z) = h(z + ci)− h(z + cj) = mbm(ci − cj)zm−1 + · · · .

If for all j, deg βj(z) ≥ ρ − 1, then, by [14, Theorem 1.51], σ(z) ≡ 0 and
αj(z) ≡ 0 for j = 1, . . . , k. Hence F vanishes, a contradiction. If this is not
the case, then deg βj(z) < ρ− 1 for some 1 ≤ j0 ≤ k, which is a contradiction.
Therefore,

σ(z)− αj0(z)eβj0 (z) =

k∑
j=1,j 6=j0

αj(z)e
βj(z).

Since deg(βi − βj) = ρ − 1 for every 1 ≤ i 6= j ≤ k, by [14, Theorem 1.51]

again, αj(z) ≡ 0 for all j 6= j0, and σ(z)e−βj0 (z)(z) ≡ αj0(z). This implies
that τj(z)τ(z+ cj) vanishes for all j 6= j0, hence g(f) includes just one term, a
contradiction.

We point out to the reader that it is impossible to have deg βj < ρ − 1 for
all 1 < j < k, since deg(βi − βj) = ρ− 1 for every 1 ≤ i 6= j ≤ k.
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(b) Suppose next that λ(F ) > ρ− 1. We may write g(f) as

(53) g(f) =

 k∑
j=1

τj(z)τ(z + cj)e
h(z+cj)−h(z)

 eh(z).

Since deg(h(z + cj)− h(z)) = ρ− 1 and τj(z) (1 ≤ j ≤ k), τ(z) are λ-small
functions of f with λ < ρ − 1, then λ(g(f)) ≤ ρ − 1. This inequality and
λ(f) < ρ− 1 implies a contradiction

ρ− 1 < λ(F ) = λ(fng(f)) ≤ ρ− 1.

(c) If finally λ(f) = ρ−1, then, from (53), λ(F ) ≤ ρ−1. On the other hand,
we have

(54) nN

(
r,

1

f

)
= N

(
r,
g(f)

F

)
≤ N

(
r,

1

F

)
+ Sλ(r, f).

By (54) and since λ < ρ − 1 we obtain ρ − 1 = λ(f) ≤ λ(F ). This completes
the proof of Part (2)-(i).

To prove Part (2)-(ii), we may write f(z) = τ(z)eh(z), where h is a poly-
nomial of degree ρ ≥ 1 and τ := τ1

τ2
is a meromorphic function where τ1, τ2

are the canonical products of zeros and poles, respectively. Since λ(f) = λ∗

(ρ−1 < λ∗ < ρ) and λ < λ∗, we have ρ(τ1) = λ∗ and ρ(τ2) < λ∗. This leads to
ρ(τ) = λ∗. By this and (53) we deduce that λ(g(f)) ≤ λ∗, hence λ(F ) ≤ λ∗.

On the other hand, from (54) and since λ < λ∗, we deduce that λ(F ) ≤ λ∗.
As to Part (2)-(iii), we may use the same reasoning as in (2) above to obtain

that g(f) = T (z)eαz where α is a constant and T is a meromorphic function of
order 0. Therefore, λ(F ) = 0. �

Proof of Theorem 3.4. (i) Suppose that d ( 6= 0) is the Borel exceptional value
of f(z) and

k∑
j=1,kj=0

bj(z) 6≡ 0.

Clearly, the order ρ is an integer and f(z) can be written in the form

(55) f(z) = d+ π(z)eαz
ρ

,

where α 6= 0 is a constant and π(z) is a non-vanishing meromorphic function
satisfying ρ(π) < ρ. Thus

(56) f(z + cj) = d+ π(z + cj)πj(z)e
αzρ ,

where πj is a meromorphic function of order ρ−1. On the other hand, we may
write g(f) as

(57) g(f) =
∑
j∈I1

bj(z)f(z + cj) +
∑
j∈I2

bj(z)f
(kj)(z + cj),
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where I1 = {1 ≤ j ≤ k : kj = 0} and I2 = {1 ≤ j ≤ k : kj > 0}. Hence, for
every j ∈ I2
(58) f (kj)(z + cj) = Qkj (z)e

αzρ ,

where Qkj is a meromorphic function of order less than ρ. By substituting (56)
and (58) into (57), we get

F (z) = d2A(z) + d (B(z) + C(z) + π(z)A(z)) eαz
ρ

+ π(z) (B(z) + C(z)) e2αz
ρ

,(59)

where

A(z) :=
∑
j∈I1

bj(z) (6≡ 0), B(z) :=
∑
j∈I1

π(z + cj)πj(z)bj(z)

and

C(z) :=
∑
j∈I2

bj(z)Qkj (z).

By Lemma 4.3, we know that ρ(F ) = ρ. If F (z) has a Borel exceptional value
d∗, then

(60) F (z) = d∗ + π∗(z)eβz
ρ

,

where β (6= 0) is a constant, and π∗(z) (6≡ 0) is a meromorphic function of
order less than ρ. By (59) and (60), we have
(61)

d(B(z)+C(z)+π(z)A(z))eαz
ρ

+π(z)(B(z)+C(z))e2αz
ρ

−π∗(z)eβz
ρ

=d∗−d2A(z).

Case 1. If β 6= α and β 6= 2α, then by (61) and [14, Theorem 1.51], we get

π∗(z) ≡ 0, which is a contradiction.

Case 2. If β = α and β 6= 2α, then the equation (61) may written as

(d(B(z)+C(z)+π(z)A(z))−π∗(z)) eαz
ρ

+π(z)(B(z)+C(z))e2αz
ρ

=d∗−d2A(z).

By this and [14, Theorem 1.51], we get π∗(z) = d∗

d π(z). Substituting this into
(60) and combining the result with (55), we obtain

f(z)g(f)(z) = F (z) = d∗ +
d∗

d
π(z)eαz

ρ

=
d∗

d
f(z).

Thus, g(f)(z) = d∗

d , contradicting the assumption that g(f) is non-constant.

Case 3. If β 6= α and β = 2α, then the equation (61) may written as

d(B(z)+C(z)+π(z)A(z))eαz
ρ

+(π(z)(B(z)+C(z))− π∗(z)) e2αz
ρ

=d∗−d2A(z).

By this and [14, Theorem 1.51], we get π∗(z) = −d
∗

d2 π
2(z). Substituting this

into (60) and combining the result with (55) , we get

F (z) = d∗ − d∗

d2
(f(z)− d)2.
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Clearly d∗ 6= 0 as we would have g(f) ≡ 0 otherwise, which is a contradiction.
Hence

(62)
d∗ − F (z)

(d− f(z))2
=
d∗

d2
.

We prove now the second identity, from (62) we get∑
j∈I1

bj(z)
f(z + cj)− d
f(z)− d

+
∑
j∈I2

bj(z)
f (kj)(z + cj)

f(z)− d
+
d∗

d2
=

d∗

d − d
∑
j∈I1 bj(z)

f(z)− d
.

Suppose contrary to the claim that d∗ − d2
∑
j∈I1 bj(z) 6≡ 0, then from the

above equation, we deduce

m

(
r,

1

f − d

)
= O(rρ−1+ε) + Sλ(r, f).

By this and since d is a Borel exceptional value of f , we obtain

T

(
r,

1

f − d

)
= O(rρ−1+ε) + Sλ(r, f),

which is a contradiction.
(ii) Suppose that d 6= 0 and

k∑
j=1,kj=0

bj(z) ≡ 0.

Suppose that F has a finite Borel exceptional value d∗. By the same proof as
in (i), we obtain (61) as

d(B(z) + C(z))eαz
ρ

+ π(z)(B(z) + C(z))e2αz
ρ

− π∗(z)eβz
ρ

= d∗.

If β 6= α and β 6= 2α, β = α and β 6= 2α or β 6= α and β = 2α, then by using
[14, Theorem 1.51], we get π∗(z) ≡ 0 in all three cases, which is a contradiction.

(iii) Suppose that d = 0 is the Borel exceptional value of f . Using the same
method as above, we obtain (59) with d = 0:

F (z) = π(z)(B(z) + C(z))e2αz
ρ

.

Since ρ(F ) = ρ, then π(z)(B(z) + C(z)) 6≡ 0 and since ρ(π(B + C)) < ρ, we
deduce that d = 0 is a Borel exceptional value of f . �

Proof of Theorem 3.8. We shall prove this theorem by contradiction. Suppose
contrary to our assertion that λ(F − a) < ρ, then ρ is an integer ≥ 1.

If first a = 0, applying the principle of contraposition on the part (1) of
Theorem 3.1, we get λ(2(f) ≤ λ(f) < ρ, which is a contradiction.

Suppose next that a 6= 0, then F (z) can be written as the form

(63) F (z) = fn(z)g(f)(z)− a = τ(z)eQ(z),
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where τ(z) is a λ-small function of f and Q(z) is a polynomial of degree ρ ≥ 1.
Differentiating (63) and eliminating eQ(z) yields

F ′(z)

F (z)
=

(
τ ′(z)

τ(z)
+Q′(z)

)(
1− a

F (z)

)
.

Clearly τ ′(z)
τ(z) +Q′(z) 6≡ 0. Indeed, if not, then F ′(z) ≡ 0 which contradicts the

fact ρ(F ) = ρ. Since λ(2(f) = ρ ≥ 1, then there exists a multiple zero z0 of f

that is not a pole of the coefficients of g(f) and such that τ ′(z0)
τ(z0)

+Q′(z0) 6= 0.

From the above equation, we observe that z0 is a simple pole of F ′

F and a pole
of multiplicity at least 2 of a

F , which is a contradiction. �

Acknowledgment. The authors would like to thank the referee for his/her
valuable comments which helped to complete some defects in the original ver-
sion.

References

[1] A. Alotaibi, On the zeros of af(f (k))n − 1 for n ≥ 2, Comput. Methods Funct. Theory

4 (2004), no. 1, 227–235. https://doi.org/10.1007/BF03321066
[2] M. Andasmas and Z. Latreuch, Further results on certain type of nonlinear difference

polynomials, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), 39–51.

[3] Z. Chen, Complex Differences and Difference Equations, Science Press, Beijing, 2014.
[4] Z. Chen, Z. Huang, and X. Zheng, On properties of difference polynomials, Acta Math.

Sci. Ser. B (Engl. Ed.) 31 (2011), no. 2, 627–633. https://doi.org/10.1016/S0252-

9602(11)60262-2

[5] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function,

plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88–104. https:

//doi.org/10.1112/jlms/s2-37.121.88

[6] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon

Press, Oxford, 1964.
[7] I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in

Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/

9783110863147

[8] , Zero distribution of some shift polynomials, J. Math. Anal. Appl. 469 (2019),

no. 2, 808–826. https://doi.org/10.1016/j.jmaa.2018.09.036

[9] I. Laine and C.-C. Yang, Clunie theorems for difference and q-difference polynomials, J.
Lond. Math. Soc. (2) 76 (2007), no. 3, 556–566. https://doi.org/10.1112/jlms/jdm073

[10] Z. Latreuch and B. Beläıdi, On Picard value problem of some difference polynomials,

Arab. J. Math. (Springer) 7 (2018), no. 1, 27–37. https://doi.org/10.1007/s40065-
017-0189-x

[11] N. Li and L. Yang, Value distribution of certain type of difference polynomials, Abstr.
Appl. Anal. 2014 (2014), Art. ID 278786, 6 pp. https://doi.org/10.1155/2014/278786
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