Browse > Article
http://dx.doi.org/10.4134/JKMS.j180207

AREA DISTORTION UNDER MEROMORPHIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSION  

Bhowmik, Bappaditya (Department of Mathematics Indian Institute of Technology Kharagpur)
Satpati, Goutam (Department of Mathematics Indian Institute of Technology Kharagpur)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.2, 2019 , pp. 439-455 More about this Journal
Abstract
Let ${\Sigma}_k(p)$ be the class of univalent meromorphic functions defined on the unit disc ${\mathbb{D}}$ with k-quasiconformal extension to the extended complex plane ${\hat{\mathbb{C}}}$, where $0{\leq}k<1$. Let ${\Sigma}^0_k(p)$ be the class of functions $f{\in}{\Sigma}_k(p)$ having expansion of the form $f(z)=1/(z-p)+{\sum_{n=1}^{\infty}}\;b_nz^n$ on ${\mathbb{D}}$. In this article, we obtain sharp area distortion and weighted area distortion inequalities for functions in ${\sum_{k}^{0}}(p)$. As a consequence of the obtained results, we present a sharp upper bound for the Hilbert transform of characteristic function of a Lebesgue measurable subset of ${\mathbb{D}}$.
Keywords
meromorphic; quasiconformal; area distortion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Lehto, Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. A I No. 500 (1971), 10 pp.
2 O. Lehto, Univalent functions and Teichmuller spaces, Graduate Texts in Mathematics, 109, Springer-Verlag, New York, 1987.
3 A. E. Livingston, Convex meromorphic mappings, Ann. Polon. Math. 59 (1994), no. 3, 275-291.   DOI
4 J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), no. 4, 607-613.   DOI
5 F. G. Avkhadiev and K.-J. Wirths, A proof of the Livingston conjecture, Forum Math. 19 (2007), no. 1, 149-157.   DOI
6 K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37-60.   DOI
7 K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press, Princeton, NJ, 2009.
8 K. Astala and V. Nesi, Composites and quasiconformal mappings: new optimal bounds in two dimensions, Calc. Var. Partial Differential Equations 18 (2003), no. 4, 335-355.   DOI
9 B. Bhowmik and G. Satpati, On some results for a class of meromorphic functions having quasiconformal extension, Proc. Indian Acad. Sci. Math. Sci. 2018 (2018), 128:61, no. 5.
10 B. Bhowmik, S. Ponnusami, and K. Virs, Concave functions, Blaschke products, and polygonal mappings, Sib. Math. J. 50 (2009), no. 4, 609-615; translated from Sibirsk. Mat. Zh. 50 (2009), no. 4, 772-779.   DOI
11 B. Bhowmik, G. Satpati, and T. Sugawa, Quasiconformal extension of meromorphic functions with nonzero pole, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2593-2601.   DOI
12 B. V. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661-664.
13 P. N. Chichra, An area theorem for bounded univalent functions, Proc. Cambridge Philos. Soc. 66 (1969), 317-321.   DOI
14 A. Eremenko and D. H. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2793-2797.   DOI
15 F. W. Gehring and E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 388 (1966), 15 pp.
16 J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25-27.   DOI
17 S. L. Krushkal, Exact coefficient estimates for univalent functions with quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 349-357.
18 R. Kuhnau and W. Niske, Abschatzung des dritten Koeffizienten bei den quasikonform fortsetzbaren schlichten Funktionen der Klasse S, Math. Nachr. 78 (1977), 185-192.   DOI