DOI QR코드

DOI QR Code

MEROMORPHIC FUNCTIONS SHARING 1CM+1IM CONCERNING PERIODICITIES AND SHIFTS

  • Cai, Xiao-Hua (Department of Mathematics Fujian Normal University) ;
  • Chen, Jun-Fan (Department of Mathematics Fujian Normal University)
  • Received : 2018.01.25
  • Accepted : 2018.05.30
  • Published : 2019.01.31

Abstract

The aim of this paper is to investigate the problems of meromorphic functions sharing values concerning periodicities and shifts. In this paper we prove the following result: Let f(z) and g(z) be two nonconstant entire functions, let $c{\in}{\mathbb{C}}{\setminus}\{0\}$, and let $a_1$, $a_2$ be two distinct finite complex numbers. Suppose that ${\mu}(f){\neq}1$, ${\rho}_2(f)<1$, and f(z) = f(z+c) for all $z{\in}{\mathbb{C}}$. If f(z) and g(z) share $a_1$ CM, $a_2$ IM, then $f(z){\equiv}g(z)$. Moreover, examples are given to show that all the conditions are necessary.

Keywords

References

  1. G. Brosch, Eindeutigkeitssatze fur meromorphe funktionen, Thesis, Technical University of Aachen, 1989.
  2. K. S. Charak, R. J. Korhonen, and G. Kumar, A note on partial sharing of values of meromorphic functions with their shifts, J. Math. Anal. Appl. 435 (2016), no. 2, 1241-1248. https://doi.org/10.1016/j.jmaa.2015.10.069
  3. S. Chen, "2CM+1IM" theorem for periodic meromorphic functions, Results Math. 71 (2017), no. 3-4, 1073-1082. https://doi.org/10.1007/s00025-016-0555-6
  4. S. Chen, Some researches on shift operators, difference operators and differential operators of meromorphic functions, Thesis, Fujian Normal University, 2017.
  5. S. Chen and A. Xu, Periodicity and unicity of meromorphic functions with three shared values, J. Math. Anal. Appl. 385 (2012), no. 1, 485-490. https://doi.org/10.1016/j.jmaa.2011.06.072
  6. Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
  7. Y.-M. Chiang and S.-J. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3767-3791. https://doi.org/10.1090/S0002-9947-09-04663-7
  8. G. G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc. (2) 20 (1979), no. 3, 457-466. https://doi.org/10.1112/jlms/s2-20.3.457
  9. G. G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983), no. 2, 545-567. https://doi.org/10.1090/S0002-9947-1983-0694375-0
  10. G. G. Gundersen, Research questions on meromorphic functions and complex differential equations, Comput. Methods Funct. Theory 17 (2017), no. 2, 195-209. https://doi.org/10.1007/s40315-016-0178-7
  11. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  12. R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
  13. R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
  14. W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  15. J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. https://doi.org/10.1080/17476930903394770
  16. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results for shifts of meromorphic functions, and suffcient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  17. M. Ozawa, On the existence of prime periodic entire functions, Kodai Math. Sem. Rep. 29 (1977/78), no. 3, 308-321. https://doi.org/10.2996/kmj/1138833654
  18. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
  19. J. H. Zheng, Unicity theorem for period meromorphic functions that share three values, Chin. Sci. Bull. 37 (1992), no. 1, 12-15. https://doi.org/10.1360/csb1992-37-1-12