KYUNGPOOK Math. J. 58(2018), 307-318
https://doi.org/10.5666/KMJ.2018.58.2.307
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On the Fekete-Szegö Problem for a Certain Class of Meromorphic Functions Using q-Derivative Operator

Mohamed Kamal Aouf
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
e-mail : mkaouf127@yahoo.com
Halit Orhan*
Department of Mathematics, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
e-mail : orhanhalit607@gmail.com

Abstract. In this paper, we obtain Fekete-Szegö inequalities for certain class of meromorphic functions $f(z)$ for which

$$
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[z D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)} \prec \varphi(z)(\alpha \in \mathbb{C} \backslash(0,1], 0<q<1) .
$$

Sharp bounds for the Fekete-Szegö functional $\left|a_{1}-\mu a_{0}^{2}\right|$ are obtained.

1. Introduction

The theory of q-analysis has important role in many areas of mathematics and physics, for example, in the areas of ordinary fractional calculus, optimal control problems, q-difference, q-integral equations and in q-transform analysis (see for instance $[1,6,8,9])$. The study of q-calculus has gained momentum years mainly due to the pioneer work of M. E. H. Ismail et al. [7] in recent years; it was followed by such works as those by S. Kanas and D. Raducanu [10] and S. Sivasubramanian and M. Govindaraj [19]. Let Σ denote the class of meromorphic functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

* Corresponding Author.

Received October 6, 2017; revised March 27, 2018; accepted March 29, 2018.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Analytic, meromorphic, q-starlike and convex functions, FeketeSzegö problem, convolution.
which are analytic in the open punctured unit disc

$$
\mathbb{U}^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathbb{U} \backslash\{0\}
$$

A function $f \in \Sigma$ is meromorphic starlike of order β, denoted by $\Sigma^{*}(\beta)$, if

$$
-\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta(0 \leq \beta<1 ; z \in \mathbb{U})
$$

The class $\Sigma^{*}(\beta)$ was introduced and studied by Pommerenke [16] (see also Miller [14]). Let $\varphi(z)$ be an analytic function with positive real part on \mathbb{U} satisfies $\varphi(0)=$ 1 and $\varphi^{\prime}(0)>0$ which maps \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis. Let $\Sigma^{*}(\varphi)$ be the class of functions $f(z) \in \Sigma$ for which

$$
-\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)(z \in \mathbb{U}) .
$$

The class $\Sigma^{*}(\varphi)$ was introduced and studied by Silverman et al. [18]. The class $\Sigma^{*}(\beta)$ is the special case of $\Sigma^{*}(\varphi)$ when $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$. Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

which are analytic in the open unit disc \mathbb{U} and let \mathcal{S} be the subclass of \mathcal{A} consisting of functions which are analytic and univalent in \mathbb{U}. Ma and Minda [13] introduced and studied the class $\mathcal{S}^{*}(\varphi)$ which consists of functions $f(z) \in \mathcal{S}$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)(z \in \mathbb{U})
$$

and the class $\mathcal{C}(\varphi)$ consists of functions $f(z) \in \mathcal{S}$ for which

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z)(z \in \mathbb{U})
$$

Following Ma and Minda [13], Shanmugam and Sivasubramanian [17] defined a more general class $\mathcal{M}_{\alpha}(\varphi)$ consists of functions $f(z) \in \mathcal{S}$ for which

$$
\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \varphi(z)(\alpha \geq 0)
$$

Analogous to the class $\mathcal{M}_{\alpha}(\varphi)$, Aouf et al. [4] defined the class $\mathcal{F}_{\alpha}^{*}(\varphi)$ as follows: For $\alpha \in \mathbb{C} \backslash(0,1]$, let $\mathcal{F}_{\alpha}^{*}(\varphi)$ be the subclass of Σ consisting of functions $f(z)$ of the form (1.1) and satisfying the analytic criterion:

$$
-\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \varphi(z)
$$

For a function $f(z) \in \Sigma$ given by (1.1) and $0<q<1$, the q-derivative of a function $f(z)$ is defined by (see Gasper and Rahman [6])

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \text { if } z \in \mathbb{U}^{*} \tag{1.2}
\end{equation*}
$$

From (1.2), we deduce that $D_{q} f(z)$ for a function $f(z)$ of the form (1.1) is given by

$$
D_{q} f(z)=-\frac{1}{q z^{2}}+\sum_{k=0}^{\infty}[k]_{q} a_{k} z^{k-1}(z \neq 0)
$$

where

$$
[i]_{q}=\frac{1-q^{i}}{1-q}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$, we have

$$
\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)
$$

Making use of the q-derivative D_{q}, we introduce the subclass $\mathcal{F}_{q, \alpha}^{*}(\varphi)$ as follows: For $\alpha \in \mathbb{C} \backslash(0,1], 0<q<1$, a function $f(z) \in \Sigma$ is said to be in the class $\mathcal{F}_{q, \alpha}^{*}(\varphi)$, if and only if

$$
\begin{equation*}
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[z D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)} \prec \varphi(z)(z \in \mathbb{U}) . \tag{1.3}
\end{equation*}
$$

We note that:
(i) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, \alpha}^{*}(\varphi)=\mathcal{F}_{\alpha}^{*}(\varphi)$ (see Aouf et al. [4]);
(ii) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, 0}^{*}(\varphi)=\Sigma^{*}(\varphi)$ (see Silverman et al. [18] and Ali and Ravichandran [2]);
(iii) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, 0}^{*}\left(\frac{1+z}{1-z}\right)=\mathcal{F}^{*}(1)=\mathcal{F}^{*}($ see Aouf $[3$, with $b=1])$;
(iv) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, 0}^{*}\left(\frac{1+(1-2 \beta) z}{1-z}\right)=\Sigma^{*}(\beta)(0 \leq \beta<1)$ (see Pommerenke [16]);
(v) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, 0}^{*}\left(\frac{1+\beta(1-2 \gamma \eta) z}{1+\beta(1-2 \gamma) z}\right)=\Sigma(\eta, \beta, \gamma)\left(0 \leq \eta<1,0<\beta \leq 1, \frac{1}{2} \leq \gamma \leq 1\right)$ (see Kulkarni and Joshi [12]);
(vi) $\lim _{q \rightarrow 1^{-}} \mathcal{F}_{q, 0}^{*}\left(\frac{1+A z}{1+B z}\right)=K_{1}(A, B)(0 \leq B<1,-B<A<B)$ (see Karunakaran [11]).

2. Fekete-Szegö Problem

To prove our results, we need the following lemmas.
Lemma 1.([13]) If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part in \mathbb{U} and μ is a complex number, then

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1 ;|2 \mu-1|\} .
$$

The result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}} \text { and } p(z)=\frac{1+z}{1-z} \text {. }
$$

Lemma 2.([13]) If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is a function with positive real part in \mathbb{U}, then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq \begin{cases}-4 \nu+2 & \text { if } \nu \leq 0, \\ 2 & \text { if } 0 \leq \nu \leq 1, \\ 4 \nu-2 & \text { if } \nu \geq 1 .\end{cases}
$$

When $\nu<0$ or $\nu>1$, the equality holds if and only if $p_{1}(z)=\frac{1+z}{1-z}$ or one of its rotations. If $0<\nu<1$, then the equality holds if and only if $p_{1}(z)=\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $\nu=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $\nu=1$, the equality holds if and only if

$$
\frac{1}{p_{1}(z)}=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}(0 \leq \lambda \leq 1),
$$

or one of its rotations. Also the above upper bound is sharp and it can be improved as follows when $0<\nu<1$:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2\left(0<\nu \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2\left(\frac{1}{2}<\nu<1\right) .
$$

Unless otherwise mentioned, we assume throughout this paper that $\alpha \in \mathbb{C} \backslash(0,1]$ and $0<q<1$.

Theorem 1. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$. If $f(z)$ given by (1.1) belongs to the class $\mathcal{F}_{q, \alpha}^{*}(\varphi)$ and μ is a complex number, then

$$
\text { (i) } \begin{align*}
& \left|a_{1}-\mu a_{0}^{2}\right| \leq \frac{1}{1+q}\left|\frac{(q-2 \alpha) B_{1}}{(q-\alpha+\alpha q)}\right| \tag{2.1}\\
& \quad \times \max \left\{1,\left|\frac{B_{2}}{B_{1}}-\left[1-\mu \frac{(q-2 \alpha)(q-\alpha+\alpha q)(q+1)}{(q-\alpha)^{2}}\right] B_{1}\right|\right\}\left(B_{1} \neq 0\right)
\end{align*}
$$

and

$$
\begin{equation*}
\text { (ii) } \quad\left|a_{1}\right| \leq \frac{1}{1+q}\left|\frac{(q-2 \alpha) B_{2}}{(q-\alpha+\alpha q)}\right| \quad\left(B_{1}=0\right) \tag{2.2}
\end{equation*}
$$

The result is sharp.
Proof. If $f(z) \in \mathcal{F}_{\alpha}^{*}(\varphi)$, then there is a Schwarz function $w(z)$ in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ in \mathbb{U} and such that

$$
\begin{equation*}
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[z D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)}=\varphi(w(z)) \tag{2.3}
\end{equation*}
$$

Define the function $p_{1}(z)$ by

$$
\begin{equation*}
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots \tag{2.4}
\end{equation*}
$$

Since $w(z)$ is a Schwarz function, we see that $\Re\left\{p_{1}(z)\right\}>0$ and $p_{1}(0)=1$. Define

$$
\begin{equation*}
p(z)=-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[z D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)}=1+b_{1} z+b_{2} z^{2}+\ldots \tag{2.5}
\end{equation*}
$$

In view of (2.3), (2.4) and (2.5), we have

$$
\begin{equation*}
p(z)=\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) . \tag{2.6}
\end{equation*}
$$

Since

$$
\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\left(c_{3}+\frac{c_{1}^{3}}{4}-c_{1} c_{2}\right) z^{3}+\ldots\right]
$$

Therefore, we have

$$
\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)=1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\ldots
$$

and from this equation and (2.6), we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1}
$$

and

$$
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

Then, from (2.5) and (1.1), we see that

$$
b_{1}=-\left(\frac{q-\alpha}{q-2 \alpha}\right) a_{0}
$$

and

$$
b_{2}=\left(\frac{q-\alpha}{q-2 \alpha}\right)^{2} a_{0}^{2}-\frac{(q+1)(q-\alpha+\alpha q)}{q-2 \alpha} a_{1}
$$

or, equivalently, we have

$$
\begin{equation*}
a_{0}=-\left(\frac{q-2 \alpha}{q-\alpha}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}=-\frac{(q-2 \alpha) B_{1}}{2(1+q)(q-\alpha+\alpha q)}\left[c_{2}-\frac{c_{1}^{2}}{2}\left(1-\frac{B_{2}}{B_{1}}+B_{1}\right)\right] . \tag{2.8}
\end{equation*}
$$

Therefore

$$
a_{1}-\mu a_{0}^{2}=-\frac{(q-2 \alpha) B_{1}}{2(1+q)(q-\alpha+\alpha q)}\left\{c_{2}-\nu c_{1}^{2}\right\}
$$

where

$$
\begin{equation*}
\nu=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+B_{1}-\mu \frac{(q-2 \alpha)(q-\alpha+\alpha q)(q+1) B_{1}}{(q-\alpha)^{2}}\right] \tag{2.9}
\end{equation*}
$$

Now, the result (2.1) follows by an application of Lemma 1. Also, if $B_{1}=0$, then

$$
a_{0}=0 \text { and } a_{1}=-\frac{(q-2 \alpha) B_{2} c_{1}^{2}}{4(1+q)(q-\alpha+\alpha q)}
$$

Since $p(z)$ has positive real part, $\left|c_{1}\right| \leq 2$ (see Nehari [15]), so that

$$
\left|a_{1}\right| \leq \frac{1}{1+q}\left|\frac{(q-2 \alpha) B_{2}}{(q-\alpha+\alpha q)}\right|
$$

this proving (2.2). The result is sharp for the functions

$$
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)}=\varphi\left(z^{2}\right)
$$

and

$$
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} f(z)+\alpha q z D_{q}\left[D_{q} f(z)\right]}{\left(1-\frac{\alpha}{q}\right) f(z)+\alpha z D_{q} f(z)}=\varphi(z)
$$

This completes the proof of Theorem 1.

Remark 1.

(i) For $q \rightarrow 1^{-}$in Theorem 1, we obtain the result obtained by Aouf et al. [4, Theorem 2.1];
(ii) For $q \rightarrow 1^{-}$and $\alpha=0$ in Theorem 1, we obtain the result obtained by Silverman et al. [18, Theorem 2.1].

By using Lemma 2, we can obtain the following theorem.
Theorem 2. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\ldots\left(B_{i}>0, i \in\{1,2\}, 0<\alpha<\frac{q}{1+q}\right)$. If $f(z)$ given by (1.1) belongs to the class $\mathcal{F}_{q, \alpha}^{*}(\varphi)$, then

$$
\left|a_{1}-\mu a_{0}^{2}\right| \leq \begin{cases}\frac{(q-2 \alpha) B_{1}^{2}}{(1+q)(q-\alpha+\alpha q)}\left\{-B_{2}+\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}^{2}\right\} & \text { if } \mu \leq \sigma_{1}, \tag{2.10}\\ \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2}, \\ \frac{(q-2 \alpha) B_{1}^{2}}{(1+q)(q-\alpha+\alpha q)}\left\{B_{2}-\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}^{2}\right\} & \text { if } \mu \geq \sigma_{2},\end{cases}
$$

where

$$
\sigma_{1}=\frac{(q-\alpha)^{2}\left[-B_{1}-B_{2}+B_{1}^{2}\right]}{(q-2 \alpha)(q-\alpha+\alpha q)(1+q) B_{1}^{2}} \text { and } \sigma_{2}=\frac{(q-\alpha)^{2}\left(B_{1}-B_{2}+B_{1}^{2}\right)}{(q-2 \alpha)(q-\alpha+\alpha q)(1+q) B_{1}^{2}}
$$

The result is sharp. Further, let

$$
\sigma_{3}=\frac{(q-\alpha)^{2}\left[-B_{2}+B_{1}^{2}\right]}{(q-2 \alpha)(q-\alpha+\alpha q)(1+q) B_{1}^{2}}
$$

(i) If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{align*}
& \left|a_{1}-\mu a_{0}^{2}\right|+\frac{(q-\alpha)^{2}}{(q-2 \alpha)(q-\alpha+\alpha q)(1+q) B_{1}^{2}} \tag{2.11}\\
& \times\left\{\left(B_{1}+B_{2}\right)+\left[\mu \frac{(1+q)(q-2 \alpha)(q-\alpha+\alpha q)}{q(1-\alpha)^{2}}-1\right] B_{1}^{2}\right\}\left|a_{0}\right|^{2} \\
& \leq \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)} .
\end{align*}
$$

(ii) If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{align*}
& \left|a_{1}-\mu a_{0}^{2}\right|+\frac{(q-\alpha)^{2}}{(q-2 \alpha)(q-\alpha+\alpha q)(1+q) B_{1}^{2}} \tag{2.12}\\
& \times\left\{\left(B_{1}-B_{2}\right)+\left[1-\mu \frac{(1+q)(q-2 \alpha)(q-\alpha+\alpha q)}{q(1-\alpha)^{2}}\right] B_{1}^{2}\right\}\left|a_{0}\right|^{2} \\
& \leq \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)}
\end{align*}
$$

Proof. First, let $\mu \leq \sigma_{1}$. Then

$$
\begin{aligned}
\left|a_{1}-\mu a_{0}^{2}\right| & \leq \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)}\left\{-\frac{B_{2}}{B_{1}}+\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}\right\} \\
& \leq \frac{(q-2 \alpha) B_{1}^{2}}{(1+q)(q-\alpha+\alpha q)}\left\{-B_{2}+\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}^{2}\right\} .
\end{aligned}
$$

Let, now $\sigma_{1} \leq \mu \leq \sigma_{2}$. Then, using the above calculations, we obtain

$$
\left|a_{1}-\mu a_{0}^{2}\right| \leq \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)}
$$

Finally, if $\mu \geq \sigma_{2}$, then

$$
\begin{aligned}
\left|a_{1}-\mu a_{0}^{2}\right| & \leq \frac{(q-2 \alpha) B_{1}}{(1+q)(q-\alpha+\alpha q)}\left\{\frac{B_{2}}{B_{1}}-\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}\right\} \\
& \leq \frac{(q-2 \alpha) B_{1}^{2}}{(1+q)(q-\alpha+\alpha q)}\left\{B_{2}-\left[1-\mu \frac{[q-\alpha(1+q)](1+q)(q-2 \alpha)}{q(1-\alpha)^{2}}\right] B_{1}^{2}\right\} .
\end{aligned}
$$

To show that the bounds are sharp, we define the functions $K_{\varphi n}(n \geq 2)$ by

$$
\begin{gathered}
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} K_{\varphi n}(z)+\alpha q z D_{q}\left[z D_{q} K_{\varphi n}(z)\right]}{\left(1-\frac{\alpha}{q}\right) K_{\varphi n}(z)+\alpha z D_{q} K_{\varphi n}(z)}=\varphi\left(z^{n-1}\right), \\
\left.z^{2} K_{\varphi n}(z)\right|_{z=0}=0=-\left.z^{2} K_{\varphi n}^{\prime}(z)\right|_{z=0}-1,
\end{gathered}
$$

and the functions F_{γ} and $G_{\gamma}(0 \leq \gamma \leq 1)$ by

$$
\begin{gathered}
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} F_{\gamma}(z)+\alpha q z D_{q}\left[z D_{q} F_{\gamma}(z)\right]}{\left(1-\frac{\alpha}{q}\right) F_{\gamma}(z)+\alpha z D_{q} F_{\gamma}(z)}=\varphi\left(\frac{z(z+\gamma)}{1+\gamma z}\right), \\
\left.z^{2} F_{\gamma}(z)\right|_{z=0}=0=-\left.z^{2} F_{\gamma}^{\prime}(z)\right|_{z=0}-1,
\end{gathered}
$$

and

$$
\begin{gathered}
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q} G_{\gamma}(z)+\alpha q z D_{q}\left[z D_{q} G_{\gamma}(z)\right]}{\left(1-\frac{\alpha}{q}\right) G_{\gamma}(z)+\alpha z D_{q} G_{\gamma}(z)}=\varphi\left(-\frac{z(z+\gamma)}{1+\gamma z}\right), \\
\left.z^{2} G_{\gamma}(z)\right|_{z=0}=0=-\left.z^{2} G_{\gamma}^{\prime}(z)\right|_{z=0}-1 .
\end{gathered}
$$

Cleary the functions $K_{\varphi n}, F_{\gamma}$ and $G_{\gamma} \in \mathcal{F}_{q, \alpha}^{*}(\varphi)$. Also we write $K_{\varphi}=K_{\varphi 2}$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if $f(z)$ is K_{φ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds if $f(z)$ is $K_{\varphi 3}$ or one of its rotations. If $\mu=\sigma_{1}$, then the equality holds if and only if $f(z)$ is F_{γ} or one of its rotations. If $\mu=\sigma_{2}$, then the equality holds if and only if $f(z)$ is G_{γ} or one of its rotations. This completes the proof of Theorem 2.

Remark 2.

(i) For $q \rightarrow 1^{-}$in Theorem 2, we obtain the result obtained by Aouf et al. [4, Theorem 2];
(ii) Putting $q \rightarrow 1^{-}$and $\alpha=0$ in Theorem 2, we obtain the result obtained by Ali and Ravichandran [2, Theorem 5.1].

3. Applications to Functions Defined by q-Bessel Function

We recall some definitions of q-calculus which we will be used in our paper. For any complex number α, the q-shifted factorials are defined by

$$
\begin{equation*}
(\alpha ; q)_{0}=1 ; \quad(\alpha ; q)_{n}=\prod_{k=0}^{n-1}\left(1-\alpha q^{k}\right) \quad(n \in \mathbb{N}=\{1,2, \ldots\}) \tag{3.1}
\end{equation*}
$$

If $|q|<1$, the definition (3.1) remains meaningful for $n=\infty$ as a convergent infinite product

$$
(\alpha ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\alpha q^{j}\right)
$$

In terms of the analogue of the gamma function

$$
\left(q^{\alpha} ; q\right)_{n}=\frac{\Gamma_{q}(\alpha+n)(1-q)^{n}}{\Gamma_{q}(\alpha)}(n>0)
$$

where the q-gamma function is defined by

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}(1-q)^{1-x}}{\left(q^{x} ; q\right)_{\infty}}(0<q<1)
$$

We note that

$$
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{\alpha} ; q\right)_{n}}{(1-q)^{n}}=(\alpha)_{n}
$$

where

$$
(\alpha)_{n}= \begin{cases}1 & \text { if } n=0 \\ \alpha(\alpha+1)(\alpha+2) \ldots(\alpha+n-1) & \text { if } n \in \mathbb{N}\end{cases}
$$

Now, consider the q-analoge of Bessel fnction defined by (Jackson [8])

$$
\mathcal{J}_{v}^{(1)}(z ; q)=\frac{\left(q^{v+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(q ; q)_{k}\left(q^{v+1} ; q\right)_{k}}\left(\frac{z}{2}\right)^{2 k+\nu} \quad(0<q<1)
$$

Also, let us define

$$
\begin{aligned}
\mathcal{L}_{v}(z ; q) & =\frac{2^{v}(q ; q)_{\infty}}{\left(q^{v+1} ; q\right)_{\infty}(1-q)^{v} z^{v / 2+1}} \mathcal{J}_{v}^{(1)}\left(z^{1 / 2}(1-q) ; q\right) \\
& =\frac{1}{z}+\sum_{k=0}^{\infty} \frac{(-1)^{k+1}(1-q)^{2(k+1)}}{4^{(k+1)}(q ; q)_{k+1}\left(q^{v+1} ; q\right)_{k+1}} z^{k}(z \in \mathbb{U})
\end{aligned}
$$

By using the Hadamard product (or convolution), we define the linear operator $\mathcal{L}_{q, v}: \Sigma \rightarrow \Sigma$, as follows:

$$
\begin{aligned}
\left(\mathcal{L}_{q, v} f\right)(z) & =\mathcal{L}_{v}(z ; q) * f(z) \\
& =\frac{1}{z}+\sum_{k=0}^{\infty} \frac{(-1)^{k+1}(1-q)^{2(k+1)}}{4^{(k+1)}(q ; q)_{k+1}\left(q^{v+1} ; q\right)_{k+1}} a_{k} z^{k} .
\end{aligned}
$$

As $q \rightarrow 1^{-}$, the linear operator $\mathcal{L}_{q, v}$ reduces to the operator \mathcal{L}_{v} introduced and studied by Aouf et al. [5]. For $0<q<1$ and $\alpha \in \mathbb{C} \backslash(0,1]$, let $\mathcal{F}_{q, \alpha, v}^{*}(\varphi)$ be the subclass of Σ consisting of functions $f(z)$ of the form (1.1) and satisfies the analytic criterion:

$$
-\frac{\left(1-\frac{\alpha}{q}\right) q z D_{q}\left(\mathcal{L}_{q, v} f\right)+\alpha q z D_{q}\left[D_{q}\left(\mathcal{L}_{q, v} f\right)\right]}{\left(1-\frac{\alpha}{q}\right)\left(\mathcal{L}_{q, v} f\right)+\alpha z D_{q}\left(\mathcal{L}_{q, v} f\right)} \prec \varphi(z)(z \in \mathbb{U}) .
$$

Using similar arguments to those in the proof of the above theorems, we obtain the following theorems.

Theorem 3. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to the class $\mathcal{F}_{q, \alpha, v}^{*}(\varphi)$ and μ is a complex number, then
(i) $\left|a_{1}-\mu a_{0}^{2}\right| \leq \frac{4^{2}\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)}{(1-q)^{2}}\left|\frac{B_{1}(q-2 \alpha)}{q+\alpha q-\alpha}\right|$

$$
\times \max \left\{1,\left|\frac{B_{2}}{B_{1}}-\left[1-\mu \frac{(q-2 \alpha)\left(1-q^{v+1}\right)(q-\alpha+\alpha q)}{\left(1-q^{v+2}\right)(q-\alpha)^{2}}\right] B_{1}\right|\right\}\left(B_{1} \neq 0\right)
$$

(ii) $\quad\left|a_{1}\right| \leq \frac{4^{2}\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)}{(1-q)^{2}}\left|\frac{B_{2}(q-2 \alpha)}{q+\alpha q-\alpha}\right| \quad\left(B_{1}=0\right)$.

The result is sharp.
Theorem 4. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\ldots,\left(B_{i}>0, i \in\{1,2\}, \alpha>0\right)$. If $f(z)$ given by (1.1) belongs to the class $\mathcal{F}_{q, \alpha, v}^{*}(\varphi)$, then

$$
\left|a_{1}-\mu a_{0}^{2}\right| \leq \begin{cases}\frac{4^{2}\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)(q-2 \alpha) B_{1}^{2}}{(1-q)^{2}(q+\alpha q-\alpha)} \\ \quad \times\left\{-B_{2}+\left[1-\mu \frac{(q-2 \alpha)\left(1-q^{v+1}\right)(q-\alpha+\alpha q)}{\left(1-q^{v+2}\right)(q-\alpha)^{2}}\right]\right. & \left.B_{1}^{2}\right\} \\ \frac{4^{2}\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)[q-\alpha(q+1)] B_{1}}{q(1-q)^{2}} & \text { if } \sigma_{1}^{*} \leq \mu \leq \sigma_{1}^{*}, \\ \frac{4^{2}\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)[q-\alpha(q+1)]}{q(1-q)^{2}} \\ \times\left\{B_{2}-\left[1-\mu \frac{(q-2 \alpha)\left(1-q^{v+1}\right)(q-\alpha+\alpha q)}{\left(1-q^{v+2}\right)(q-\alpha)^{2}}\right] B_{1}^{2}\right\} & \text { if } \mu \geq \sigma_{2}^{*},\end{cases}
$$

where

$$
\sigma_{1}^{*}=\frac{(q-\alpha)^{2}\left(1-q^{v+2}\right)\left[-B_{1}-B_{2}+B_{1}^{2}\right]}{(q-2 \alpha)(q-\alpha+\alpha q)\left(1-q^{v+1}\right) B_{1}^{2}}
$$

and

$$
\sigma_{2}^{*}=\frac{(q-\alpha)^{2}\left(1-q^{v+2}\right)\left[B_{1}-B_{2}+B_{1}^{2}\right]}{(q-2 \alpha)(q-\alpha+\alpha q)\left(1-q^{v+1}\right) B_{1}^{2}}
$$

The result is sharp. Further, let

$$
\sigma_{3}^{*}=\frac{(q-\alpha)^{2}\left(1-q^{v+2}\right)\left[-B_{2}+B_{1}^{2}\right]}{(q-2 \alpha)(q-\alpha+\alpha q)\left(1-q^{v+1}\right) B_{1}^{2}}
$$

(i) If $\sigma_{1}^{*} \leq \mu \leq \sigma_{3}^{*}$, then

$$
\begin{aligned}
& \left|a_{1}-\mu a_{0}^{2}\right|+\frac{\left(1-q^{v+2}\right)(q-\alpha)^{2}}{(q-2 \alpha)(q-\alpha+\alpha q)\left(1-q^{v+1}\right) B_{1}^{2}} \\
& \times\left\{\left(B_{1}+B_{2}\right)+\left[\mu \frac{(q-2 \alpha)\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)(q-\alpha+\alpha q)}{\left(1-q^{v+2}\right)(q-\alpha)^{2}}-1\right] B_{1}^{2}\right\}\left|a_{0}\right|^{2} \\
\leq & \frac{4^{2}(q-2 \alpha)\left(1-q^{v+1}\right)\left(1-q^{v+2}\right) B_{1}}{(1-q)^{2}(q-\alpha+\alpha q)}
\end{aligned}
$$

(ii) If $\sigma_{3}^{*} \leq \mu \leq \sigma_{2}^{*}$, then

$$
\begin{aligned}
& \left|a_{1}-\mu a_{0}^{2}\right|+\frac{\left(1-q^{v+2}\right)(q-\alpha)^{2}}{(q-2 \alpha)(q-\alpha+\alpha q)\left(1-q^{v+1}\right) B_{1}^{2}} \\
& \times\left\{\left(B_{1}-B_{2}\right)+\left[1-\mu \frac{(q-2 \alpha)\left(1-q^{v+1}\right)\left(1-q^{v+2}\right)(q-\alpha+\alpha q)}{\left(1-q^{v+2}\right)(q-\alpha)^{2}}\right] B_{1}^{2}\right\}\left|a_{0}\right|^{2} \\
\leq & \frac{4^{2}(q-2 \alpha)\left(1-q^{v+1}\right)\left(1-q^{v+2}\right) B_{1}}{(1-q)^{2}(q-\alpha+\alpha q)}
\end{aligned}
$$

References

[1] M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail and Z. S. Mansour, Linear qdifference equations, Z. Anal. Anwend., 26(2007), 481-494.
[2] R. M. Ali and V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math., 14(4)(2010), 1479-1490.
[3] M. K. Aouf, Coefficient results for some classes of meromorphic functions, J. Natur. Sci. Math., 27(2)(1987), 81-97.
[4] M. K. Aouf, R. M. El-Ashwah and H. M. Zayed, Fekete-Szego inequalities for certain class of meromorphic functions, J. Egyptian Math. Soc., 21(2013), 197-200.
[5] M. K. Aouf, A. O. Mostafa and,H. M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., Art. ID 973613 (2015), 6 pp.
[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[7] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14(1990), 77-84.
[8] F. H. Jackson, The application of basic numbers to Bessel's and Legendre's functions, (Second paper), Proc. London Math. Soc., 3(2)(1904-1905), 1-23.
[9] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[10] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014) 1183-1196.
[11] V. Karunakaran, On a class of meromorphic starlike functions in the unit disc, Math. Chronicle, 4(2-3)(1976), 112-121.
[12] S. R. Kulkarni and S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, J. Indian Acad. Math., 24(1)(2002), 197-205.
[13] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, 157-169.
[14] J. E. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25(1970), 220-228.
[15] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[16] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13(1963), 221-235.
[17] T. Shanmugam and S. Sivasubramanian, On the Fekete-Szegö problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math., 6(3)(2005), Article 71, 6 pp.
[18] H. Silverman, K. Suchithra, B. A. Stephen and A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl., (2008), Art. ID 931981, 9 pp.
[19] S. Sivasubramanian and M.Govindaraj, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43(3)(2017), 475-487.

