• Title/Summary/Keyword: Mathematics and Economics

Search Result 189, Processing Time 0.03 seconds

A Study of Web Usage Mining for eCRM

  • Hyuncheol Kang;Jung, Byoung-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.831-840
    • /
    • 2001
  • In this study, We introduce the process of web usage mining, which has lately attracted considerable attention with the fast diffusion of world wide web, and explain the web log data, which Is the main subject of web usage mining. Also, we illustrate some real examples of analysis for web log data and look into practical application of web usage mining for eCRM.

  • PDF

CONSUMPTION-LEISURE CHOICE WITH STOCHASTIC INCOME FLOW

  • Lee, Ho-Seok;Lim, Byung Hwa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-112
    • /
    • 2020
  • This paper investigates the portfolio selection problem with flexible labor choice and stochastic income flow where the unit wage flow is governed by a stochastic process. The agent optimally chooses consumption, investment, and labor supply. We derive the closed-form solution by applying a martingale method even with the stochastic income flow.

ON THE INDEX AND BIDERIVATIONS OF SIMPLE MALCEV ALGEBRAS

  • Yahya, Abdelaziz Ben;Boulmane, Said
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.385-397
    • /
    • 2022
  • Let (M, [ , ]) be a finite dimensional Malcev algebra over an algebraically closed field 𝔽 of characteristic 0. We first prove that, (M, [ , ]) (with [M, M] ≠ 0) is simple if and only if ind(M) = 1 (i.e., M admits a unique (up to a scalar multiple) invariant scalar product). Further, we characterize the form of skew-symmetric biderivations on simple Malcev algebras. In particular, we prove that the simple seven dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric biderivation.

SOME CURIOSITIES OF THE ALGEBRA OF BOUNDED DIRICHLET SERIES

  • Mortini, Raymond;Sasane, Amol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.153-161
    • /
    • 2016
  • It is shown that the algebra $\mathfrak{H}^{\infty}$ of bounded Dirichlet series is not a coherent ring, and has infinite Bass stable rank. As corollaries of the latter result, it is derived that $\mathfrak{H}^{\infty}$ has infinite topological stable rank and infinite Krull dimension.

AN EXTENSION OF SOFT ROUGH FUZZY SETS

  • Beg, Ismat;Rashid, Tabasam
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.71-85
    • /
    • 2017
  • This paper introduces a novel extension of soft rough fuzzy set so-called modified soft rough fuzzy set model in which new lower and upper approximation operators are presented together their related properties that are also investigated. Eventually it is shown that these new models of approximations are finer than previous ones developed by using soft rough fuzzy sets.

FIXED POINT THEOREMS IN ORDERED DUALISTIC PARTIAL METRIC SPACES

  • Arshad, Muhammad;Nazam, Muhammad;Beg, Ismat
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • In this article, we introduce the concept of ordered dualistic partial metric spaces and establish an order relation on quasi dualistic partial metric spaces. Later on, using this order relation, we prove xed point theorems for single and multivalued mappings. We support our results with some illustrative examples.

SHIODA-TATE FORMULA FOR AN ABELIAN FIBERED VARIETY AND APPLICATIONS

  • Oguiso, Keiji
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.237-248
    • /
    • 2009
  • We give an explicit formula for the Mordell-Weil rank of an abelian fibered variety and some of its applications for an abelian fibered $hyperk{\ddot{a}}hler$ manifold. As a byproduct, we also give an explicit example of an abelian fibered variety in which the Picard number of the generic fiber in the sense of scheme is different from the Picard number of generic closed fibers.

SUBORDINATION RESULTS FOR CERTAIN SUBCLASSES BY USING INTEGRAL OPERATOR DEFINED IN THE SPACE OF ANALYTIC FUNCTIONS

  • Sakar, F. Muge;Guney, H. Ozlem
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.315-323
    • /
    • 2018
  • In this study, firstly we introduce generalized differential and integral operator, also using integral operator two classes are presented. Furthermore, some subordination results involving the Hadamard product (Convolution) for these subclasses of analytic function are proved. A number of consequences of some of these subordination results are also discussed.

FINITE GROUPS WITH A CYCLIC NORM QUOTIENT

  • Wang, Junxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.479-486
    • /
    • 2016
  • The norm N(G) of a group G is the intersection of the normalizers of all the subgroups of G. In this paper, the structure of finite groups with a cyclic norm quotient is determined. As an application of the result, an interesting characteristic of cyclic groups is given, which asserts that a finite group G is cyclic if and only if Aut(G)/P(G) is cyclic, where P(G) is the power automorphism group of G.

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.