DOI QR코드

DOI QR Code

ON THE INDEX AND BIDERIVATIONS OF SIMPLE MALCEV ALGEBRAS

  • Yahya, Abdelaziz Ben (Department of Mathematics Faculty of Sciences Meknes University of Moulay Ismail) ;
  • Boulmane, Said (Department of Economics and Management Polydisciplinary faculty University of Moulay Ismail)
  • Received : 2021.05.02
  • Accepted : 2021.11.04
  • Published : 2022.04.30

Abstract

Let (M, [ , ]) be a finite dimensional Malcev algebra over an algebraically closed field 𝔽 of characteristic 0. We first prove that, (M, [ , ]) (with [M, M] ≠ 0) is simple if and only if ind(M) = 1 (i.e., M admits a unique (up to a scalar multiple) invariant scalar product). Further, we characterize the form of skew-symmetric biderivations on simple Malcev algebras. In particular, we prove that the simple seven dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric biderivation.

Keywords

References

  1. H. Albuquerque and S. Benayadi, Quadratic Malcev superalgebras, J. Pure Appl. Algebra 187 (2004), no. 1-3, 19-45. https://doi.org/10.1016/S0022-4049(03)00145-2
  2. I. Bajo and S. Benayadi, Lie algebras admitting a unique quadratic structure, Comm. Algebra 25 (1997), no. 9, 2795-2805. https://doi.org/10.1080/00927879708826023
  3. A. Baklouti and S. Benayadi, Pseudo-Euclidean Jordan algebras, Comm. Algebra 43 (2015), no. 5, 2094-2123. https://doi.org/10.1080/00927872.2014.888562
  4. M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comenian. (N.S.) 66 (1997), no. 2, 151-201.
  5. S. Boulmane, New characterizations of semisimple alternative algebras, To appear in Iran. J. Math. Sci. Inform. (2020).
  6. M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
  7. M. Bresar, W. S. Martindale, III, and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342-357. https://doi.org/10.1006/jabr. 1993.1223
  8. M. Bresar and K. Zhao, Biderivations and commuting linear maps on Lie algebras, J. Lie Theory 28 (2018), no. 3, 885-900.
  9. Z. Chen, Biderivations and linear commuting maps on simple generalized Witt algebras over a field, Electron. J. Linear Algebra 31 (2016), 1-12. https://doi.org/10.13001/1081-3810.3100
  10. X. Han, D. Wang, and C. Xia, Linear commuting maps and biderivations on the Lie algebras W(a, b), J. Lie Theory 26 (2016), no. 3, 777-786.
  11. E. N. Kuz'min, Malcev algebras and their representations, Algebra and Logic 7 (1968), 233-244. https://doi.org/10.1007/BF02218665
  12. E. N. Kuz'min, The connection between Mal'cev algebras and analytic Moufang loops, Algebra i Logika 10 (1971), 3-22.
  13. E. N. Kuz'min, The structure and representations of finite-dimensional Mal'tsev algebras, Trudy Inst. Mat. (Novosibirsk) 16 (1989), Issled. po Teor. Kolets i Algebr, 75-101, 198.
  14. G. F. Leger and E. M. Luks, Generalized derivations of Lie algebras, J. Algebra 228 (2000), no. 1, 165-203. https://doi.org/10.1006/jabr.1999.8250
  15. W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217-242. https://doi.org/10.2307/1990753
  16. X. Liu, X. Guo, and K. Zhao, Biderivations of the block Lie algebras, Linear Algebra Appl. 538 (2018), 43-55. https://doi.org/10.1016/j.laa.2017.10.011
  17. O. Loos, Uber eine Beziehung zwischen Malcev-Algebren und Lietripelsystemen, Pacific J. Math. 18 (1966), 553-562. http://projecteuclid.org/euclid.pjm/1102994136 https://doi.org/10.2140/pjm.1966.18.553
  18. A. I. Mal'cev, Analytic loops, Mat. Sb. N.S. 36(78) (1955), 569-576.
  19. K. Meyberg, Lectures on algebras and triple systems, The University of Virginia, Charlottesville, VA, 1972.
  20. H. C. Myung, Mal'cev-admissible algebras, Progress in Mathematics, 64, Birkhauser Boston, Inc., Boston, MA, 1986. https://doi.org/10.1007/978-1-4899-6661-2
  21. A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458. https://doi.org/10.2307/1993472
  22. A. A. Sagle, Simple Malcev algebras over fields of characteristic zero, Pacific J. Math. 12 (1962), 1057-1078. http://projecteuclid.org/euclid.pjm/1103036320 https://doi.org/10.2140/pjm.1962.12.1057
  23. X. Tang, Biderivations of finite-dimensional complex simple Lie algebras, Linear Multilinear Algebra 66 (2018), no. 2, 250-259. https://doi.org/10.1080/03081087.2017.1295433
  24. D. Wang and X. Yu, Biderivations and linear commuting maps on the Schrodinger-Virasoro Lie algebra, Comm. Algebra 41 (2013), no. 6, 2166-2173. https://doi.org/10.1080/00927872.2012.654551
  25. D. Wang, X. Yu, and Z. Chen, Biderivations of the parabolic subalgebras of simple Lie algebras, Comm. Algebra 39 (2011), no. 11, 4097-4104. https://doi.org/10.1080/00927872.2010.517820
  26. K. Yamaguti, Note on Malcev algebras, Kumamoto J. Sci. Ser. A 5 (1962), 203-207.
  27. K. Yamaguti, On the theory of Malcev algebras, Kumamoto J. Sci. Ser. A 6 (1963), 9-45.
  28. Z. X. Zhang, Y. Q. Shi, and L. N. Zhao, Invariant symmetric bilinear forms on Lie triple systems, Comm. Algebra 30 (2002), no. 11, 5563-5573. https://doi.org/10.1081/AGB120015671