Browse > Article
http://dx.doi.org/10.4134/JKMS.j200616

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE  

Chen, Qinghua (Institute of Mathematics School of Mathematical Sciences Nanjing Normal University)
Li, Yayun (School of Applied Mathematics Nanjing University of Finance & Economics)
Ma, Mengfan (Institute of Mathematics School of Mathematical Sciences Nanjing Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.6, 2021 , pp. 1327-1345 More about this Journal
Abstract
In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.
Keywords
Chern-Simons-Higgs equation; Liouville theorem; Riesz potential; finite energy solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Ma, Quantization effects for a variant of the Ginzburg-Landau type system, Electron. J. Differential Equations 2008 (2008), No. 135, 6 pp.
2 M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy, J. Funct. Anal. 255 (2008), no. 3, 535-588. https://doi.org/10.1016/j.jfa.2008.04.020   DOI
3 L. Lei and X. Xu, A Liouville theorem for an integral equation of the Ginzburg-Landau type, arXiv. 2006.14951, 2020.
4 Y. Li, Q. Chen, and Y. Lei, A Liouville theorem for the fractional Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 358 (2020), no. 6, 727-731. https://doi.org/10.5802/crmath.91   DOI
5 Y. Li and Y. Lei, Boundedness for solutions of equations of the Chern-Simons-Higgs type, Appl. Math. Lett. 88 (2019), 8-12. https://doi.org/10.1016/j.aml.2018.08.002   DOI
6 K. Bogdan, T. Kulczycki, and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math. 46 (2002), no. 2, 541-556. http://projecteuclid.org/euclid.ijm/1258136210   DOI
7 H. Brezis, F. Merle, and T. Riviere, Quantization effects for -∆u = u(1 - |u|2) in R2, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35-58. https://doi.org/10.1007/BF00375695   DOI
8 J. Han, Quantization effects for Maxwell-Chern-Simons vortices, J. Math. Anal. Appl. 363 (2010), no. 1, 265-274. https://doi.org/10.1016/j.jmaa.2009.08.011   DOI
9 J. Han and J. Jang, On the Chern-Simons-Higgs vortex equation without gauge fields, Nonlinear Anal. 69 (2008), no. 9, 2950-2963. https://doi.org/10.1016/j.na.2007.08.065   DOI
10 J. Han and N. Kim, Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains, J. Funct. Anal. 221 (2005), no. 1, 167-204. https://doi.org/10.1016/j.jfa.2004.09.012   DOI
11 L. Lassoued and C. Lefter, On a variant of the Ginzburg-Landau energy, NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 1, 39-51. https://doi.org/10.1007/s000300050032   DOI
12 L. Ma, Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Internat. J. Math. 27 (2016), no. 5, 1650048, 6 pp. https://doi.org/10.1142/S0129167X16500488   DOI
13 L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 348 (2010), no. 17-18, 993-996. https://doi.org/10.1016/j.crma.2010.07.031   DOI