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SOME CURIOSITIES OF THE ALGEBRA OF BOUNDED

DIRICHLET SERIES

Raymond Mortini and Amol Sasane

Abstract. It is shown that the algebra H ∞ of bounded Dirichlet series
is not a coherent ring, and has infinite Bass stable rank. As corollaries
of the latter result, it is derived that H ∞ has infinite topological stable
rank and infinite Krull dimension.

1. Introduction

The aim of this short note is to make explicit two observations about alge-
braic properties of the ring H ∞ of bounded Dirichlet series. In particular we
will show that

(1) H ∞ is not a coherent ring. (This is essentially an immediate conse-
quence of Eric Amar’s proof of the noncoherence of the Hardy algebra
H∞(Dn) of the polydisk Dn for n ≥ 3 [1].)

(2) H ∞ has infinite Bass stable rank. (This is a straightforward adapta-
tion of the first author’s proof of the fact that the stable rank of the
infinite polydisk algebra is infinite [12]). As corollaries, we obtain that
H

∞ has infinite topological stable rank, and infinite Krull dimension.

Before giving the relevant definitions, we briefly mention that H ∞ is a closed
Banach subalgebra of the classical Hardy algebra H∞(C>0) consisting of all
bounded and holomorphic functions in the open right half plane

C>0 := {s ∈ C : Re(s) > 0},

and it is striking to compare our findings with the corresponding results for
H∞(C>0):
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H∞(C>0) H ∞

Coherent? Yes (See [11]) No
Bass stable rank 1 (See [17]) ∞
Topological stable rank 2 (See [16]) ∞
Krull dimension ∞ (See [13]) ∞

Nevertheless the above results for H
∞ lend support to Harald Bohr’s idea of

interpreting Dirichlet series as functions of infinitely many complex variables,
a key theme used in the proofs of the main results in this note.

We recall the pertinent definitions below.

1.1. The algebra H ∞ of bounded Dirichlet series

H ∞ denotes the set of Dirichlet series

(1.1) f(s) =
∞∑

n=1

an
ns

,

where (an)n∈N is a sequence of complex numbers, such that f is holomorphic
and bounded in C>0. Equipped with pointwise operations and the supremum
norm,

‖f‖∞ := sup
s∈C>0

|f(s)|, f ∈ H
∞,

H ∞ is a unital commutative Banach algebra. In [8, Theorem 3.1], it was
shown that the Banach algebra H ∞ is precisely the multiplier space of the
Hilbert space H of Dirichlet series

f(s) =

∞∑

n=1

an
ns

for which

‖f‖2H :=
∞∑

n=1

|an|2 < ∞.

The importance of the Hilbert space H stems from the fact that its kernel
function KH(z, w) is related to the Riemann zeta function ζ:

KH(z, w) = ζ(z + w).

For m ∈ N, let H ∞
m be the closed subalgebra of H ∞ consisting of Dirichlet

series of the form (1.1) involving only integers n generated by the first m primes
2, 3, . . . , pm.

1.2. H ∞ = H
∞(D∞)

In [8, Lemma 2.3 and the proof of Theorem 3.1], it was established that H ∞

is isometrically (Banach algebra) isomorphic to H∞(D∞), a certain algebra of
functions analytic in the infinite dimensional polydisk, defined below. As this
plays a central role in what follows, we give an outline of this based on [8], [10]
and [15].
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A seminal observation made by H. Bohr [3], is that if we put

z1 =
1

2s
, z2 =

1

3s
, z3 =

1

5s
, . . . , zn =

1

psn
, . . . ,

where pn denotes the nth prime, then, in view of the Fundamental Theorem
of Arithmetic, formally a Dirichlet series in H ∞

n or H ∞ can be considered
as a power series of infinitely many variables. Indeed, each n has a unique
expansion

n = p
α1(n)
1 · · · pαr(n)(n)

r(n) ,

with nonnegative αj(n)s, and so, from (1.1), we obtain the formal power series

(1.2) F (z) =

∞∑

n=1

anz
α1(n)
1 · · · zαr(n)(n)

r(n) ,

where z = (z1, . . . , zm) or z = (z1, z2, z3, . . .) depending on whether f is a
function in H ∞

m or in H ∞. Let us recall Kronecker’s Theorem on diophantine
approximation [7, Chapter XXIII]:

Proposition 1.1. For each m ∈ N, the map

t 7→ (2−it, 3−it, . . . , p−it
m ) : (0,∞) → Tm

has dense range in Tm, where T := {z ∈ C : |z| = 1}.

Using the above and the Maximum Principle, it can be shown that for f ∈ H ∞
m ,

(1.3) ‖f‖∞ = ‖F‖∞,

where the norm on the right hand side is the H∞(Dm) norm. Here H∞(Dm)
denotes the usual Hardy algebra of bounded holomorphic functions on the
polydisk Dm, endowed with the supremum norm:

‖F‖∞ := sup
z∈Dm

|F (z)|, F ∈ H∞(Dm).

In [8], it was shown that this result also holds in the infinite dimensional case.
In order to describe this result, we introduce some notation. Let c0 be the
Banach space of complex sequences tending to 0 at infinity, with the induced
norm from ℓ∞, and let B be the open unit ball of that Banach space. Thus
with N := {1, 2, 3, . . .} and D := {z ∈ C : |z| < 1},

B = c0 ∩ DN.

For a point z = (z1, . . . , zm, . . .) ∈ B, we set z(m) := (z1, . . . , zm, 0, . . .), that is,
zk = 0 for k > m. Substituting z(m) in the argument of F given formally by
(1.2), we obtain a function

(z1, . . . , zm) 7→ F (z(m)),
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which we call the mth-section Fm (after Bohr’s terminology “mte abschnitt”).
F is said to be in H∞(D∞) if the H∞ norm of these functions Fm are uni-
formly bounded, and denote the supremum of these norms to be ‖F‖∞. Using
Schwarz’s Lemma for the polydisk, it can be seen that for m < ℓ,

|F (z(m))− F (z(ℓ))| ≤ 2‖f‖∞ ·max{|zj| : m < j ≤ ℓ},
and so we may define

F (z) = lim
m→∞

F (z(m)).

It was shown in [8] that (1.3) remains true in the infinite dimensional case, and
so we may associate H ∞ with H∞(D∞).

Proposition 1.2 ([8]). There exists a Banach algebra isometric isomorphism

ι : H ∞ → H∞(D∞).

1.3. Coherence

Definition 1.3. Let R be a unital commutative ring, and for n ∈ N, let
Rn = R × · · · ×R (n times).

For f = (f1, . . . , fn) ∈ Rn, a relation g on f is an n-tuple g = (g1, . . . , gn) in
Rn such that

g1f1 + · · ·+ gnfn = 0.

The set of all relations on f is denoted by f⊥.
The ring R is said to be coherent if for each n and each f ∈ Rn, the R-module

f⊥ is finitely generated.

A property which is equivalent to coherence is that the intersection of any
two finitely generated ideals in R is finitely generated, and the annihilator of
any element is finitely generated [4]. We refer the reader to the article [6] and
the monograph [5] for the relevance of the property of coherence in commutative
algebra. All Noetherian rings are coherent, but not all coherent rings are Noe-
therian. (For example, the polynomial ring C[x1, x2, x3, . . .] is not Noetherian
because the sequence of ideals 〈x1〉 ⊂ 〈x1, x2〉 ⊂ 〈x1, x2, x3〉 ⊂ · · · is ascending
and not stationary, but C[x1, x2, x3, . . .] is coherent [5, Corollary 2.3.4].)

In the context of algebras of holomorphic functions in the unit disk D, we
mention [11], where it was shown that the Hardy algebra H∞(D) is coherent,
while the disk algebra A(D) isn’t. For n ≥ 3, Amar [1] showed that the Hardy
algebra H∞(Dn) is not coherent. (It is worth mentioning that whether the
Hardy algebra H∞(D2) of the bidisk is coherent or not seems to be an open
problem.) Using Amar’s result, we will prove the following result:

Theorem 1.4. H ∞ is not coherent.

1.4. Stable rank

In algebraic K-theory, the notion of (Bass) stable rank of a ring was intro-
duced in order to facilitate K-theoretic computations [2].
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Definition 1.5. Let R be a commutative ring with an identity element (de-
noted by 1).

An element (a1, . . . , an) ∈ Rn is called unimodular if there exist elements
b1, . . . , bn in R such that

b1a1 + · · ·+ bnan = 1.

The set of all unimodular elements of Rn is denoted by Un(R).
We say that a = (a1, . . . , an+1) ∈ Un+1(R) is reducible if there exists an

element (x1, . . . , xn) ∈ Rn such that

(a1 + x1an+1, . . . , an + xnan+1) ∈ Un(R).

The Bass stable rank of R is the least integer n ∈ N for which every a ∈
Un+1(R) is reducible. If there is no such integer n, we say that R has infinite

stable rank.

Using the same idea as in [12, Proposition 1] (that the infinite polydisk algebra
A(D∞) has infinite Bass stable rank), we show the following.

Theorem 1.6. The Bass stable rank of H
∞ is infinite.

For Banach algebras, an analogue of the Bass stable rank, called the topo-
logical stable rank, was introduced by Marc Rieffel in [14].

Definition 1.7. Let R be a commutative complex Banach algebra with unit
element 1. The least integer n for which Un(R) is dense in Rn is called the
topological stable rank of R. We say R has infinite topological stable rank if no
such integer n exists.

Corollary 1.8. The topological stable rank of H ∞ is infinite.

Proof. This follows from the inequality that the Bass stable rank of a com-
mutative unital semisimple complex Banach algebra is at most equal to its
topological stable rank; see [14, Corollary 2.4]. �

Definition 1.9. The Krull dimension of a commutative ringR is the supremum
of the lengths of chains of distinct proper prime ideals of R.

Corollary 1.10. The Krull dimension of H ∞ is infinite.

Proof. This follows from the fact that if a ring has Krull dimension d, then its
Bass stable rank is at most d+ 2; see [9]. �

2. Noncoherence of H ∞

We will use the following fact due to Amar [1, Proof of Theorem 1.(ii)].

Proposition 2.1. (z1−z2, z2−z3)
⊥ is not a finitely generated H∞(D3)-module.
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Proof of Theorem 1.4. The main idea of the proof is that, using the isomor-
phism ι, essentially we boil the problem down to working with H∞(D∞). Let

f1 :=
1

2s
− 1

3s
,

f2 :=
1

3s
− 1

5s
.

Then ι(f1) = z1 − z2 and ι(f2) = z2 − z3. Suppose that (f1, f2)
⊥ is a finitely

generated H
∞-module, say by

[
g
(1)
1

g
(2)
1

]
, . . . ,

[
g
(1)
r

g
(2)
r

]
∈ (H ∞)2.

We will show that the 3rd section of the image under ι of the above elements
generate (z1 − z2, z2 − z3)

⊥ in H∞(D3), contradicting Proposition 2.1. If
[

G(1)

G(2)

]
∈ (H∞(D3))2 ∩ (F1, F2)

⊥,

then F1G
(1) + F2G

(2) = 0, and by applying ι−1, we see that
[

ι−1G(1)

ι−1G(2)

]
∈ (f1, f2)

⊥.

So there exist α(1), . . . , α(r) ∈ H
∞ such that

[
ι−1G(1)

ι−1G(2)

]
= α(1)

[
g
(1)
1

g
(2)
1

]
+ · · ·+ α(r)

[
g
(1)
r

g
(2)
r

]
.

Applying ι, we obtain

[
G(1)

G(2)

]
= ι(α(1))

[
ι(g

(1)
1 )

ι(g
(2)
1 )

]
+ · · ·+ ι(α(r))

[
ι(g

(1)
r )

ι(g
(2)
r )

]
.

Finally taking the 3rd section, we obtain

[
G(1)(z1, z2, z3)

G(2)(z1, z2, z3)

]
=

r∑

j=1

(ι(α(j)))(z(3))

[
(ι(g

(1)
j ))(z(3))

(ι(g
(2)
j ))(z(3))

]
.

So it follows that
[

(ι(g
(1)
1 ))(z(3))

(ι(g
(2)
1 ))(z(3))

]
, . . . ,

[
(ι(g

(1)
r ))(z(3))

(ι(g
(2)
r ))(z(3))

]

generate (z1 − z2, z2 − z3)
⊥, a contradiction to Amar’s result, Proposition 2.1.

�
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3. Stable rank of H ∞

The proof of Theorem 1.6 is a straightforward adaptation of the first author’s
proof of the fact that the Bass stable rank of the infinite polydisk algebra
is infinite [12, Proposition 1]. In [12], the infinite polydisk algebra A(D∞)
is the uniform closure of the algebra generated by the coordinate functions
z1, z2, z3, . . . on the countably infinite polydisk D× D× D× · · · .

Proof of Theorem 1.6. Fix n ∈ N. Let g ∈ H
∞ be given by

(3.1) g(s) :=

n∏

j=1

(
1− 1

(pjpn+j)s

)
∈ H

∞.

Set

f :=
( 1

2s
, . . . ,

1

psn
, g
)
∈ (H ∞)n+1.

We will show that f ∈ Un+1(H
∞) is not reducible. First let us note that f is

unimodular. Indeed, by expanding the product on the right hand side of (3.1),
we obtain

g = 1 +
1

2s
· g1 + · · ·+ 1

psn
· gn

for some appropriate g1, . . . , gn ∈ H ∞. Now suppose that f is reducible, and
that there exist h1, . . . , hn ∈ H ∞ such that

( 1

2s
+ gh1, . . . ,

1

psn
+ ghn

)
∈ Un(H

∞).

Let y1, . . . , yn ∈ H ∞ be such that
( 1

2s
+ gh1

)
y1 + · · ·+

( 1

psn
+ ghn

)
yn = 1.

Applying ι, we obtain

(3.2) (z1 + ι(g)ι(h1))ι(y1) + · · ·+ (zn + ι(g)ι(hn))ι(yn) = 1.

Let h := (ι(h1), . . . , ι(hn)). For z = (z1, . . . , zn) ∈ Cn, we define

Φ(z) =






−h(z1, . . . , zn, z1, . . . , zn, 0, . . .)
n∏

j=1

(1− |zj |2)

for |zj | < 1, j = 1, . . . , n,

0 otherwise.

Then Φ is a continuous map from Cn into Cn. But Φ vanishes outside Dn, and
so

max
z∈Dn

‖Φ(z)‖2 = sup
z∈Cn

‖Φ(z)‖2.
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This implies that there must exist an r ≥ 1 such that Φ maps K := rD
n
into

K. As K is compact and convex, by Brouwer’s Fixed Point Theorem it follows
that there exists a z∗ ∈ K such that

Φ(z∗) = z∗.

Since Φ is zero outside Dn, we see that z∗ ∈ Dn. Let z∗ = (ζ1, . . . , ζn). Then
for each j ∈ {1, . . . , n}, we obtain

0 = ζj + (ι(hj))(ζ1, . . . , ζn, ζ1, . . . , ζn, 0, . . .)

n∏

k=1

(1− |ζk|2)

= ζj + (ι(hj)ι(g))(ζ1, . . . , ζn, ζ1, . . . , ζn, 0, . . .).(3.3)

But from (3.2), we know that

n∑

j=1

(zj + ι(hj)ι(g))ι(yj) = 1,

and this contradicts (3.3). As the choice of n ∈ N was arbitrary, it follows that
the Bass stable rank of H ∞ is infinite. �
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[10] B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series,

J. Fourier Anal. Appl. 16 (2010), no. 5, 676–692.
[11] W. S. McVoy and L. A. Rubel, Coherence of some rings of functions, J. Funct. Anal.

21 (1976), no. 1, 76–87.
[12] R. Mortini, An example of a subalgebra of H∞ on the unit disk whose stable rank is

not finite, Studia Math. 103 (1992), no. 3, 275–281.
[13] M. von Renteln, Primideale in der topologischen Algebra H∞(β), Math. Z. 157 (1977),

no. 1, 79–82.



ON THE ALGEBRA OF BOUNDED DIRICHLET SERIES 161

[14] M. A. Rieffel, Dimension and stable rank in the K-theory of C∗-algebras, Proc. London
Math. Soc. (3) 46 (1983), no. 2, 301–333.

[15] K. Seip, Interpolation by Dirichlet series in H∞, In Linear and Complex Analysis,
153–164, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009.
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