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SHIODA-TATE FORMULA FOR AN ABELIAN FIBERED

VARIETY AND APPLICATIONS

Keiji Oguiso

Abstract. We give an explicit formula for the Mordell-Weil rank of an
abelian fibered variety and some of its applications for an abelian fibered
hyperkähler manifold. As a byproduct, we also give an explicit example
of an abelian fibered variety in which the Picard number of the generic
fiber in the sense of scheme is different from the Picard number of generic
closed fibers.

1. Introduction

The aim of this note is to give an explicit formula for the Mordell-Weil
rank of an abelian fibered variety (Theorem 1.1) and some of its applications
for an abelian fibered hyperkähler manifold (Theorem 3.1). Our formula is
a formal generalization of the famous formula for an elliptic surface due to
Shioda and Tate ([20, 21, 22]) and some formula for a Calabi-Yau fiber space
by Kawamata [11]. Our formula is also very close to a result of Bruno Kahn [9],
which was recently posted on the ArXiv.

For the precise statement, we introduce a few notations. By an abelian

fibered variety, we mean a proper surjective morphism ϕ : X −→ Y with
rational section O, from a normal projective variety X to a normal projective
variety Y such that the generic fiber A := Xη is a positive-dimensional abelian
variety defined over C(Y ) (with origin O). Here, by a rational section, we mean
a subvariety S ⊂ X such that ϕ|S : S −→ Y is a birational morphism. We
assume that:

(1) X has only Q-factorial rational singularities;
(2) Y has only Q-factorial rational singularities;
(3) ϕ is equi-dimensional in codimension 1 in the sense that there is no

prime divisor D on X such that dimϕ(D) ≤ dimY − 2, and
(4) h1(X,OX) = h1(Y,OY ).

Let K = C(Y ). The Mordell-Weil group MW(ϕ) is, by definition, the group
A(K) of K-rational points of A. In more geometric terms, MW(ϕ) is a group of
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rational sections of ϕ, which we can naturally regarded as an abelian subgroup
of Bir (X), the group of the birational transformations of X . The Néron-Severi
group NS (AK) of A is the group of algebraic equivalence classes of divisors
defined over K.

Let ∆ ⊂ Y be the discriminant divisor of ϕ and let ∆ = ∪k
i=1∆i and

ϕ∗(∆i)red = ∪mi−1
j=0 Dij be the irreducible decomposition of ∆ and ϕ∗(∆i)red.

Note that mi is the number of prime divisors on X lying over ∆i.

Our main result is as follows:

Theorem 1.1. Under the assumption (1)-(4) and the notation above, the

Mordell-Weil group MW(ϕ) is a finitely generated abelian group of rank

rankMW (ϕ) = ρ(X) − ρ(Y ) − rankNS (AK) −
k
∑

i=1

(mi − 1).

Here ρ(X) (resp. ρ(Y )) is the Picard number of X (resp. of Y ). In particular,

rankMW (ϕ) ≤ ρ(X) − 2.

We believe that our assumptions (1)-(3) are not too restrictive in the view of
minimal model theory in higher dimension. In our formulation, some condition
like (4) is necessary for finite generation. For instance, in the product case
pr2 : A× Y −→ Y , the Mordell-Weil group MW (pr2) is far from being finitely
generated. See [9] for a more unified treatment including such cases.

Theorem 1.1 is proved in Section 2. An application for an abelian fibered
hyperkähler manifold will be given in Section 3 (Theorem 3.1). This part was
inspired by a series of work of Matsushita [13, 14, 15], a work of Sawon [18]
and also by the author’s previous work [17]. As one of byproducts of our
Theorem 1.1, we shall give an explicit example of an abelian fibered hyperkähler
manifold f : X −→ Pd of dimension 2d ≥ 4 such that all the smooth fibers
Xt are isomorphic to Ed

ζ , the self-product of the elliptic curve Eζ of period

ζ = e2πi/3, so that ρ(Xt) ≥ 2, but rankNS(AK) = 1 for the generic fiber AK

in the sense of scheme (Theorem 3.1(2)). This example shows that the Picard
number of the generic fiber in the sense of scheme is not always the same as
the Picard number of generic closed fibers. It might be interesting to compare
this with Example 3.5, a more “moderate” example.

Acknowledgement. An initial idea of this note has been grown up during
my stay at KIAS August 2005 and finalized in the present form at KIAS March
2007. I would like to express my thanks to Professors B. Kahn, F. Campana,
J. Keum, B. Kim, J. M. Hwang, J. Sawon, D.-Q. Zhang for several valuable
discussions. After acceptance of this note, I was also informed from Amilcar
Pacheco that they have also obtained a similar result when the source and
target are both smooth [8].
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2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.
By Z(X) (resp. N(X)), we denote the free abelian group of Weil divisors

on X (resp. the ablelian group of the linear equivalence classes of Weil divisors
on X). By Div X , we denote the free abelian group of Cartier divisors on X .
PicX is nothing but the group of linear equivalence classes of Cartier divisors.
Since X is normal and projective, we have a natural inclusion, PicX ⊂ N(X).

Let us start with the following lemma due to Kawamata [10]:

Lemma 2.1. The quotient group N(X)/PicX is a finite abelian group.

Proof. Let π : X ′ −→ X be a resolution of singularities of X . By [10, Proof
of Lemma (1.1)], Pic X ′/π∗PicX is a finitely generated abelian group. Note
that PicX ′ = N(X ′), because X ′ being smooth. Thus, the natural surjec-
tive homomorphism N(X ′) −→ N(X), together with the projection formula,
induces a surjective homomorphism PicX ′/π∗PicX −→ N(X)/PicX . There-
fore N(X)/PicX is also a finitely generated abelian group. On the other hand,
N(X)/PicX is a torsion group, because X is Q-factorial. Combining these two,
we obtain the result. �

Lemma 2.2. The quotient group PicX/ϕ∗PicY is a finitely generated abelian

group of rank ρ(X) − ρ(Y ).

Proof. Since ϕ∗OX = OY , the homomorphism ϕ∗ is injective. So is its restric-
tion (ϕ∗)0 : Pic0Y −→ Pic0X . Here Pic0Y (resp. Pic0X) is an abelian variety
of dimension h1(OY ) (resp. h1(OX)). This is because Y (resp. X) has only ra-
tional singularities. Since h1(OY ) = h1(OX), the homomorphism (ϕ∗)0 is then
an isomorphism. Thus, ϕ∗ : NS(Y ) −→ NS(X) is an injective homomorphism
and PicX/ϕ∗PicY ≃ NS(X)/ϕ∗NS(Y ). This implies the result. �

From now, we need some elementary properties of abelian varieties defined
over non-closed fields, for which we refer to the reader an excellent account of
Milne in [6, Chapter V].

Let Pic AK be the Picard group of A = AK , i.e., the group of linear equiv-
alence classes of divisors defined over K, and let c : PicAK −→ NS (AK) be
the natural map. By definition, c is a surjective homomorphism and its ker-
nel is the group Pic0 AK , i.e., the group of divisors defined over K, which
are algebraically equivalent to 0 modulo linearly equivalent to 0. We have
Pic0 AK = ÂK(K), where ÂK is the dual abelian variety of A = AK , both of
which are defined over K.

Let D be a Weil divisor on X . Then D|X \Sing X is Cartier, and therefore,
we have a natural surjective homomorphism:

rN(X),A : N(X) −→ Pic AK ; cl(D) 7→ cl(D|A).
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Here cl (D) is the linear equivalence class of D. Since rN(X),A(ϕ∗PicY ) = {0},
the homomorphism rN(X),A induces a homomorphism

rA : PicX/ϕ∗PicY −→ Pic AK .

By Lemma 2.1, rN(X),A(Pic X) is of finite index in PicAK . Thus the image
Im rA is a subgroup of finite index, of PicAK . Therefore, by Lemma 2.2, PicAK

is also a finitely generated abelian group of rank ρ(X)− ρ(Y ). Now subgroups
of PicAK are all finitely generated abelian groups. So, we may speak of their
rank. We denote the Q-linear extension of rA by

(rA)Q : (Pic X/PicY )Q −→ (Pic AK)Q.

(rA)Q is a surjective linear map.

Lemma 2.3. MW(ϕ) is a finitely generated abelian group and satisfies

rankMW(ϕ) = rankPicAK − rankNS (AK).

Proof. Since c is surjective and its kernel is Pic0 AK , we have

rankPic0 AK = rankPic AK − rankNS (AK).

As well-known, ÂK and AK are mutually isogenous over K. Thus, MW(ϕ) =
A(K) is also a finitely generated abelian group of the same rank as Pic0 AK =

ÂK(K). Combining this with the formula above, we obtain the desired
equality. �

Lemma 2.4. (1)
∑k

i=1(mi − 1) divisor classes

Dij ( 1 ≤ i ≤ k , 1 ≤ j ≤ mi − 1 )

are Q-linearly independent in (Pic X/ϕ∗PicY)Q.

(2) dim Ker ((rA)Q) =
∑k

i=1(mi − 1).

Proof. Let us show (1). There is a large sufficiently divisible number M such
that MDij are all Cartier. We suffice to show that there is no non-trivial

relation among 1 +
∑k

i=1(mi − 1) Cartier divisor classes

ϕ∗L (L ∈ Pic Y ), MDij ( 1 ≤ i ≤ k , 1 ≤ j ≤ mi − 1).

Since Y is projective and Q-factorial, we may assume that L is the class of
H1 − H2, where Hi are effective Cartier divisors. Consider the equation in
PicX with integral coefficients:

cϕ∗H1 +

k
∑

i=1

mi−1
∑

j=1

cijDij = cϕ∗H2.

Let C ⊂ Y be a smooth curve which is a complete intersection of dim Y − 1
sufficiently general very ample divisors. Pulling back the above equation to
the induced fibration XC = X ×C Y −→ C, one obtains the same equation as
above, but with dim C = 1. Let S ⊂ XC be a normal projective surface which
is a complete intersection of dim XC−2 sufficiently general very ample divisors.



MORDELL-WEIL GROUP 241

By pulling back the above equation further to the induced fibration S −→ C,
one obtains the same equation as above, but now dimS = 2 and dimC = 1.
Hence cij = 0 by the Zariski lemma (see eg. [1, Chap. III, Lemma 8.3]). This
implies cL = 0 in Pic (Y ) as well.

Let us show (2). It is clear that the Q-divisor classes generated by the
divisors in (1) are in the kernel. Let us show the other inclusion. The argument
below is quite close to the original argument in Shioda-Tate formula (see [20,
22]).

Let D be an integral Cartier divisor on X such that cl(D|A) = 0. It suffices
to show that the linear equivalence class of D is proportional to the sum of
divisors in (1) modulo ϕ∗PicY . (Indeed, X is Q-factorial.)

By cl(D|A) = 0, there is an element f ∈ K(A) \ {0} such that D|A =
divf as divisors on A. Since K(A) = C(X) and since K is the function field
of Y , regarding f as an element of C(X), one can also write this equality
as (D − div f)|A = 0. This is again an equality of Weil divisors, but here
we regard div f as a divisor on X . Then the support of D − div f does not
dominate Y . So, by replacing D by a suitable linearly equivalent divisor, we
may (and will) assume that SuppD does not dominate Y . By SuppD = ∪Dl,
we denote the irreducible decomposition of SuppD. Since ϕ is equi-dimensional
in codimension 1 and ϕ(Dl) 6= Y , it follows that ϕ(Dl) are Weil divisors on
Y . Again, since both X and Y are Q-factorial and since ϕ is equi-dimensional
in codimension 1, there are positive integers nl and n′

ij such that each nlDl is

either an element of ϕ∗PicY , or one of n′
ijDij (1 ≤ i ≤ k, 0 ≤ j ≤ mi−1). Since

∑mi−1
j=0 cijDij ∈ ϕ∗Pic Y for suitably chosen cij > 0, the result follows. �

By Lemma 2.4, we have

rankPicAK = ρ(X) − ρ(Y ) −

k
∑

i=1

(mi − 1).

Substituting this into the equality in Lemma 2.3, we obtain the desired formula
in Theorem 1.1.

3. Applications for an abelian fibered hyperkähler manifold

In this section, we shall work in the category of complex analytic spaces.
Especially, unless stated otherwise, the term generic point means a closed point
being in the complement of the union of countably many proper closed analytic
subvarieties.

By a hyperkähler manifold we mean a compact simply-connected complex
Kähler manifold M having everywhere non-degenerate holomorphic 2-form σM

such that H0(M, Ω2
M ) = CσM . We note that dimC M is even.
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For example, a K3 surface S is a 2-dimensional hyperkähler manifold and
its Hilbert scheme of 0-dimensional closed subscheme of length d

S[d] := Hilbd S

is a hyperkähler manifold of dimension 2d ([2]).

By a result of Matsushita [13, 14], any abelian fibered hyperkähler man-
ifold satisfies the conditions (1)-(4) required in Theorem 1.1 except perhaps
the projectivity. See also Proposition 3.2 about the projectivity of a fibered
hyperkähler manifold.

We refer to the readers an excellent account [7, Part III] for basic properties
about hyperkähler manifolds.

In this section, we shall show the following:

Theorem 3.1. (1) For each positive integer d ≥ 2 and each integer ρ with

2 ≤ ρ ≤ 20, there is an abelian fibered hyperkähler manifold fd,ρ : Md,ρ −→ Pd

of dimension 2d such that ρ(Md,ρ) = ρ and rankMW(fd,ρ) = ρ − 2.
(2) For each positive integer d ≥ 2, there is an abelian fibered hyperkähler

manifold fd : Md −→ Pd of dimension 2d such that the Picard number of all

smooth closed fibers are greater than 1 but the Picard number of the generic

fiber over C(Pd) is 1. More geometrically, all the smooth fibers are isomorphic

to Ed
ζ but the generic fiber A = Mη is simple over C(Pd). Here Eζ is the elliptic

curve of period ζ = e2πi/3 and Ed
ζ is the d-th self-product of Eζ .

In the rest, we shall prove Theorem 3.1.

Let us start with the following projectivity criterion due to F. Campana:

Proposition 3.2. Let f : M −→ B be a surjective morphism from a hy-

perkähler manifold to a normal projective variety B with connected fibers. As-

sume that 0 < dim B < dim M = 2d and M has a subvariety S such that

f(S) = B and dim S = dim B. Then M is projective and the generic fiber Mt

is an abelian variety.

Proof. By definition, M is Kähler. By Matsushita [13], any generic fiber Mt =
f−1(t) is a smooth Lagrangian submanifold, i.e., σM |Mt = 0 and dim Mt =
dim M/2 = d. (Note that in [13], M is also assumed to be projective. However,
the argument there works for non-projective M if one uses a Kähler class of M
instead of an ample class of M used there.) This implies that

Ω1
Mt

≃ NMt/M ≃ O⊕d
Mt

and therefore, that Mt is a d-dimensional complex torus. Moreover, by Voisin’s
lemma [5], Mt is also projective. Thus Mt is an abelian variety. Since B is
projective and f(S) = B, we have

d = dim B = a(B) ≤ a(S) ≤ dim S = d.

Here a(S) (resp. a(B)) is the algebraic dimension of S (resp. B). Thus, a(S) =
dim S = d. Hence S is bimeromorphic to a projective variety. In particular,
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S is covered by complete algebraic curves. Thus, any two generic points in
M can be connected by a chain of complete algebraic curves. Therefore, M is
Moishezon, i.e., dim M = a(M), by a result of Campana [3] (see also [4] for a
different approach). Since M is Kähler, M is then projective by Moishezon’s
criterion [16]. �

Proposition 3.3. Assume that there is an abelian fibered (projective) hy-

perkähler manifold f : M −→ Pd having holomorphic zero section O and r holo-

morphic sections, say Si (1 ≤ i ≤ r), which are linearly independent in MW(f).
Then, there is an abelian fibered projective hyperkähler manifold f ′ : M ′ −→ Pd

such that dim M ′ = dim M , rankMW(f ′) = r, and ρ(M ′) = r + 2.

In general, by a holomorphic section of a fiber space ϕ : X −→ Y , we mean
a subvariety S ⊂ X such that ϕ|S : S −→ Y is an isomorphism. One can then
identify S with a holomorphic map Y −→ X given by t 7→ (ϕ|S)−1(t).

Proof. Let u : U −→ K be the Kuranishi family of M , in which we assume that
0 ∈ K, M = U0 := u−1(0). Each fiber Ut := u−1(t) (t ∈ K) is a hyperkähler
manifold. Let σt be an everywhere non-degenerate holomorphic 2-form on Ut.
Then, by choosing a marking ι : R2u∗Z ≃ Λ×K, we can define the period map
p : K −→ P ; t 7→ [ι(σt)]. Here

P := {[σ] ∈ P(ΛC) | (σ, σ) = 0 , (σ, σ) > 0 } ⊂ P(ΛC).

By the local Torelli theorem, p is a local isomorphism (see eg. [7, Part III]).
Thus we can (and will) identify K with a small open neighborhood of p(0) in
P , say W , via p.

In what follows, we freely shrink 0 = p(0) ∈ W whenever we need to do so.

Let L be the pullback of the hyperplane on Pd by f . Then f = Φ|D|. Here
Φ|D| is the morphism associated with the complete linear system |L|. Note that

O and Si are Lagrangian submanifolds of M , because they are isomorphic to Pd

and Pd has no non-zero global holomorphic 2-form. Note also that H2(Pd, Z) ≃
Z.

Let us consider the deformation of M , say W (r)(⊂ W ), which keeps the
class [L] being (1, 1)-class and the Lagrangian submanifolds O, Si (1 ≤ i ≤ r)
being Lagrangian. As in Sawon [18], it follows from [14] and [23] that W (r)
is the intersection of W (⊂ P(ΛC)) with 2 + r rational hyperplanes, say Hj

(1 ≤ j ≤ 2 + r), corresponding to the required conditions on L, O and Si

(1 ≤ i ≤ r). Note that 0 ∈ W (r).
Let w : M −→ W (r) be the family induced from the universal family

u : U −→ K = W . By construction, the line bundle L and Lagrangian sub-
manifolds O and Si (1 ≤ i ≤ r) are all extended over W (r), say, L, O and Si.
It is shown by [15] (see also [18]) that h0(Mt,Lt) = d + 1 and hi(Mt,Lt) = 0
(i ≥ 1) for all t ∈ W (r). Thus, w∗L is a locally free sheaf and satisfies the base
change property. Thus, by the freeness of |L|, the linear system |L| is w-free
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and gives a fibration f̃ : M −→ Pd × W (r) with holomorphic sections O, Si

(1 ≤ i ≤ r), over W (r). Here, we also used the fact that Pd is rigid.

Fiberwisely, f̃ induces an abelian fibration f̃t : Mt −→ Pd by [13] (see also
Proposition 3.2) with holomorphic sections Ot := O|Mt and Si,t := Si|Mt

(1 ≤ i ≤ r) for each t ∈ W (r). By Proposition 3.2, Mt (t ∈ W (r)) is projective.

We take Ot as the origin of the Mordell-Weil group MW(f̃t). The sections Si,t

(1 ≤ i ≤ r) are naturally regarded as elements of MW(f̃t).

Claim 3.4. For a generic point t ∈ W (r), one has:

(1) ρ(Mt) ≤ 2 + r and
(2) Si,t (1 ≤ i ≤ r) are linearly independent in the Mordell-Weil group

MW (f̃t).

Proof. By definition of generic point, we may (and will) show (1) and (2)
individually.

Let us show (1). Let l be the number of independent rational hyperplanes
among Hj (1 ≤ j ≤ 2 + r). Let V ⊂ W (r) be the set of points t ∈ W (r) such
that the number of independent element h ∈ Λ satisfying that (h, p(σt)) = 0 is
exactly l.

Since each rational hyperplane in P(ΛC) is of the form (h, ∗) = 0 for some
h ∈ Λ \ {0}, they are countable in number. Thus V is the complement of the
union of countably many proper closed analytic subsets of W (r).

Let t ∈ V . Then, by the Lefschetz (1, 1)-Theorem, ρ(Mt) = l ≤ 2 + r. This
implies (1).

Let us show (2). Let c := (ci)
r
i=1 ∈ Zr \ {0}. Consider the subset

Dc :=

{

t ∈ W (r) |
r
∑

i=1

ciSi,t = Ot in MW(f̃t)

}

,

and its Zariski closure Dc in W (r). Then Dc is a closed analytic subset of
W (r).

Since Zr \{0} is a countable set, it now suffices to show that 0 6∈ Dc for each
c.

Choose a fiber F of f = f̃0 : M −→ Pd such that F is an abelian variety,
with origin O|F , in which Si|F (= Si|F ) (1 ≤ i ≤ r) are linearly independent
points. By assumption, such a fiber F exists. Choose then a smooth subfamily
of f̃ , say,

π := f̃F : F −→ W (r)

such that F = F0 = π−1(0) and Ft = π−1(t) is a fiber of f̃t, which is an
abelian variety with origin O|Ft. Again such a family exists. Note also that
O|F and Si|F are holomorphic sections of π. Since an abelian variety contains
no rational curve, the sum

∑r
i=1 ciSi|F , as well as O|F and Si|F , defines (not

only a rational section but also) a holomorphic section of π.
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Regard O|F and
∑r

i=1 ciSi|F as holomorphic maps from W (r) to F , rather
than subvarieties of F . Then, by definition of Dc, one has

(

r
∑

i=1

ciSi|F

)

(t) = (O|F)(t)

for all t ∈ Dc. Since the sections
∑r

i=1 ciSi|F and O|F are both holomorphic,
we obtain

(

r
∑

i=1

ciSi|F

)

(t′) = (O|F)(t′)

for all t′ ∈ Dc. Thus 0 6∈ Dc. Indeed, otherwise, we would have
(

r
∑

i=1

ciSi|F

)

(0) = (O|F)(0) , i.e.,

r
∑

i=1

ciSi|F = O|F,

a contradiction to the choice of F . �

Let us return back to the proof of Proposition 3.3. Let t ∈ W (r) be a
generic point in Claim 3.4. Then rankMW(ft) ≥ r. Hence ρ(Mt) ≥ 2 + r by
Theorem 1.1. Combining this with Claim 3.4(1), we obtain ρ(Mt) = 2+r, and

therefore, MW(ft) = r. We may now take this f̃t : Mt −→ Pd as f ′ : M −→
Pd. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) As well-known (see eg. [17]), there is an elliptic K3
surface ϕ : S −→ P1 with section O such that ρ(S) = 20 and rankMW (ϕ) = 18.

We have an abelian fibration

ϕd : S[d] −→ Pd = Symd P1,

which is the composition of the Hilbert-Chow morphism S[d] −→ Symd S and
the natural map Symd S −→ Symd P1 induced by ϕ. Moreover, the 0-section
and 18 independent sections of ϕ give rise to the holomorphic 0-section and
18 independent holomorphic sections of ϕd. Here we also used the fact that
Hilbd

P1 ≃ Pd and there is no non-trivial birational morphism from Pd to Pd.
Applying Proposition 3.3 to this ϕd, we obtain Theorem 3.1(1).
(2) Let f : S −→ P1 be an elliptic K3 surface defined by the Weierstrass

equation
y2 = x3 − (t11 − 1).

It is well-known that ρ(S) = 2 (see eg. [12]). This follows from the fact that S
admits a non-symplectic automorphism g of maximum order 66:

g∗(x, y, t) = (ζ3x,−y, ζ11t).

Here ζn = e2πi/n. Indeed, g then acts on the space of global holomorphic
2-forms as

g∗
dx ∧ dt

y
= ζ−5

66

dx ∧ dt

y
.
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This implies that

20 = ϕ(66) | rankT (S) = 22 − ρ(S) ≤ 21.

Here ϕ is the Euler function and T (S) is the transcendental lattice of S (cf. [1]).
Thus, ρ(S) = 2. From the Weierstrass equation, we also see that each smooth
fiber of f is isomorphic to Eζ and the singular fibers are all isomorphic to the

cuspidal rational curve. Let fd : S[d] −→ Pd be the abelian fibration induced
by f . Each smooth fiber of fd is then isomorphic to the product abelian variety
Ed

ζ3
.

Let us consider the generic fiber A of fd in the sense of scheme. A is an
abelian variety defined over K = C(Pd). We shall compute the rank of NS(AK)
by using Theorem 1.1.

By ρ(S) = 2, we have

ρ(S[d]) = ρ(S) + 1 = 3.

Here “+1” comes from the exceptional divisor E of the Hilbert-Chow mor-
phism, which is generically the blow-up of the big diagonal of the Chow variety
Symd S. Observe that the divisor f−1

d (∆), where ∆ is the big diagonal of

Pd = Symd
P1, consists of two irreducible components. Indeed, one component

is E and the other component is the proper transform of f
−1

d (∆), where fd is

the natural morphism from Symd S to Symd P1. Then, by Theorem 1.1,

0 ≤ rankMW (fd) ≤ 3 − 1 − 1 − rankNS (AK) = 1 − rankNS (AK).

Since rankNS(AK) ≥ 1, this implies that rankNS (AK) = 1. In particular, A
is simple, i.e., A is not isogenous to the product of lower dimensional abelian
varieties, over C(Pd).

This completes the proof of Theorem 3.1. �

It may be interesting to compare Theorem 3.1(2) with the following probably
more standard:

Example 3.5. Let fi : Si −→ P1 (i = 1, 2) be two relatively minimal rational
elliptic surfaces with section, such that discriminant locus ∆i ⊂ P1 of fi are
disjoint. Then, as is shown by [19], X := S1 ×P1 S2 is a smooth Calabi-Yau
threefold having an abelian fibration f : X −→ P1 induced by f1 and f2. In
this example, assume further that fi are generic in the sense that all singular
fibers are nodal rational curves and that the generic fiber Si,η (i = 1, 2) are
not mutually isogenous. (Most cases are such cases.) Then the Picard number
of any closed generic fiber S1,t × S2,t and the Picard number of the generic
fiber S1,η ×SpecC(P1) S2,η in the sense of scheme are all 2. This follows from the
assumption that two direct factors are not mutually isogenous (cf. [19]).
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Under the same assumption, by using Theorem 1.1, we also obtain that

rankMW (f) = 19 − 1 − 2 = 16 = 8 + 8 = rankMW (f1) + rankMW (f2).
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facteur algebrique, math.AG/0408148.
[6] G. Cornell and J. H. Silverman, Arithmetic Geometry, Springer-Verlag, New York, 1986.
[7] M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau Manifolds and Related Geometries,

Springer-Verlag, Berlin, 2003.
[8] M. Hindry, A Pacheco, and R. Wazir, Fibrations et conjecture de Tate, J. Number

Theory 112 (2005), no. 2, 345–358.
[9] B. Kahn, Démonstration géométrique du théorème de Lang-Néron, math.AG/0703063.
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