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ON THE INDEX AND BIDERIVATIONS OF SIMPLE

MALCEV ALGEBRAS

Abdelaziz Ben Yahya and Said Boulmane

Abstract. Let (M, [ , ]) be a finite dimensional Malcev algebra over
an algebraically closed field F of characteristic 0. We first prove that,

(M, [ , ]) (with [M,M ] 6= 0) is simple if and only if ind(M) = 1 (i.e.,

M admits a unique (up to a scalar multiple) invariant scalar product).
Further, we characterize the form of skew-symmetric biderivations on

simple Malcev algebras. In particular, we prove that the simple seven

dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric
biderivation.

1. Introduction

In this paper, we consider finite dimensional Malcev algebras over an alge-
braically closed field F of characteristic 0.

Malcev algebras was introduced by A. I. Malcev in [18] with the name of
Moufang-Lie algebras as tangent algebras of analytic Moufang loops, its present
name being given by A. A. Sagle in [21]. They are closely connected with the
alternative algebras in the same way as Lie algebras are related to associative
algebras. A Malcev algebra (M, [ , ]) is called quadratic (or pseudo-Euclidean)
if it is endowed with a nondegenerate symmetric bilinear form ψ which is in-
variant, that is,

ψ([x, y], z) = ψ(x, [y, z]), ∀x, y, z ∈M.

In this case, ψ is called an invariant scalar product on M . An inductive de-
scription of quadratic Malcev algebras and Malcev superalgebras was already
established by H. Albuquerque and S. Benayadi [1]. Since Malcev algebras are
naturally a generalization of Lie algebras, the study of Malcev algebras has
often proceeded by determining which properties of Lie algebras apply, in an
appropriate form, to Malcev algebras. Let us denote by F(M) the linear space
of all symmetric invariant bilinear forms on Malcev algebra M and let B(M)
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be the subspace of F(M) spanned by the set of invariant scalar products on
M . The dimension of B(M) is called the index of M and noted by ind(M).

I. Bajo and S. Benayadi [2] proved that over an algebraically closed field F of
characteristic 0, a Lie algebra (M, [ , ]), with [M,M ] 6= 0 is simple if and only if
dim B(M) = 1 . The analogous result was obtained in [3] for Jordan algebras,
in [28] for Lie triple systems and in [5] for alternative algebras. Our first main
result (Corollary 3.7) is to give the analogous result for Malcev algebras.

Next, we study skew-symmetric biderivations on simple Malcev algebras.
Commuting maps and biderivations arose first in the associative ring theory
[6, 7]. Then, many authors have made considerable efforts to make the study
of these maps very successful, see for example [9, 10, 14, 16, 23–25]. To study
biderivations and commuting linear maps of Schrödininger-Virasoro Lie alge-
bra, in [24], the authors use the Z-graduation of this algebra. Furthermore, in
[8] the authors give a general method to characterise biderivations and commut-
ing linear maps for a large class of Lie algebras, the results obtained show under
certain conditions the crucial relationship between biderivations and commut-
ing linear maps of a Lie algebra L and the elements of cent(M), with cent(M)
denote the centroid of an L-modules M . The way used in [23] requires the
use of root systems of the simple Lie algebra. In this paper, using a classi-
fication theorem in [11] and a computational method, we extend the study
of skew-symmetric biderivations to simple Malcev algebras. Our second main
result (Theorem 4.4) is to prove the following: Let (M, [ , ]) be a simple
finite-dimensional Malcev algebra over an algebraically closed field of charac-
teristic zero F. Then, every skew-symmetric biderivation δ of M is of the form
δ(x, y) = λ[x, y], x, y ∈M for some λ ∈ F.

This paper is organized as follows. In the first section we recall general
definitions and examples related to Malcev algebras. Section 2 is dedicated to
give examples of quadratic Malcev algebras and to prove an analogous result
(Corollary 3.1 in [2]) for Malcev algebras. The last section aims to characterize
the form of skew-symmetric biderivations on simple Malcev algebras. In par-
ticular, we prove that every skew-symmetric biderivation on the simple seven
dimensional non-Lie Malcev algebra is trivial. Then, we deduce our second
main result (Theorem 4.4).

2. Preliminaries

In this section, We recall some definitions and facts related to Malcev al-
gebras. The theory of Malcev algebras is well developed, see for example
([11–13,20,21,26,27]).

Definition. A Malcev algebra (M, [·, ·]) is a vector space M with a bilinear
map [·, ·] : M ×M →M satisfying:

(1) [x, y] = −[y, x], (skew-symmetry)
(2) JM (x, y, [x, z]) = [JM (x, y, z), x], (Malcev identity)
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for all x, y, z from M , where JM is the Jacobian of M defined by

JM (x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y] for all x, y, z ∈M.

Definition. A Lie algebra (g, [·, ·]) is a vector space g with a skew-symmetric
bracket [·, ·] such that Jg(x, y, z) = 0 for all x, y, z ∈ g.

Remark 2.1. It is easy to check that every Lie algebra is a Malcev algebra,
because Lie algebras in particular satisfy the Malcev identity.

However, there are Malcev algebras which are non-Lie algebras.

Example 2.2 ([21]). Let M has a basis {e1, e2, e3, e4} with multiplication
table:

[·, ·] e1 e2 e3 e4
e1 0 −e2 −e3 0
e2 e2 0 2e4 0
e3 e3 −2e4 0 0
e4 −e4 0 0 0

With few calculations, one can easily show that M is a Malcev algebra.
Moreover, JM (e1, e2, [e1, e3]) = 6e4 = [JM (e1, e2, e3), e1] and hence M is not a
Lie algebra.

Now, we give a proposition which is very useful in the sequel.

Proposition 2.3 ([11]). A simple Malcev algebra is either a simple Lie algebra
or isomorphic to the 7-dim simple (non-Lie) Malcev algebras M(α, β, γ), where
α, β, γ are scalars in F with αβγ 6= {0}.

Recall that a Malcev algebra M is called simple if it has no ideals except
itself and zero, and [M,M ] 6= {0}.

Remark 2.4. The simple non-Lie Malcev algebra M(α, β, γ), is isomorphic to
the 7-dimensional Malcev algebra B constructed by Sagle ([22], Theorem 7.12)
which is defined by the following multiplication table:

e1 e2 e3 e4 e5 e6 e7
e1 0 −αe2 −αe3 −αe4 αe5 αe6 αe7
e2 αe2 0 2e7 −2e6 e1 0 0
e3 αe3 −2e7 0 2e5 0 e1 0
e4 αe4 2e6 −2e5 0 0 0 e1
e5 −αe5 −e1 0 0 0 αe4 −αe3
e6 −αe6 0 −e1 0 −αe4 0 αe2
e7 −αe7 0 0 −e1 αe3 −αe2 0

Now, we recall Loos’s construction [17] of Lie triple systems from Malcev
algebras.

Definition ([19]). A Lie triple system is a vector space T equipped with a
trilinear product {a, b, c} satisfying the following three properties:

(1) {x, y, z} = −{y, x, z},
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(2) {x, y, z}+ {y, z, x}+ {z, x, y} = 0,
(3) {x, y, {z, t, w}} − {z, t, {x, y, w}} = {{x, y, z}, t, w}+ {z, {x, y, t}, w},

for all x, y, z, t, w ∈ T.

Example 2.5 ([17]). Let (M, [ , ]) be a Malcev algebra, then the pair (M, {·, ·})
where {·, ·} : M ×M ×M −→M defined by

{x, y, z} = 2[[x, y], z]− [[y, z], x]− [[z, x], y], ∀x, y, z ∈M

is a Lie triple system.

A general study of Lie triple systems are considered in [15,19].

3. Malcev algebras admitting a unique quadratic structure

In this section, we will prove the first main result: a Malcev algebra is
simple if and only if it admits a unique (up to a scalar multiple) invariant
scalar product.

Definition. Let (M, [ , ]) be a Malcev algebra and ψ : M ×M −→ F be a
bilinear form. ψ will be called:

(1) symmetric if ψ(x, y) = ψ(y, x) for all x, y ∈M ;
(2) nondegenerate if ψ(x, y) = 0 for all y ∈ M ⇒ x = 0 and if ψ(x, y) = 0

for all x ∈M ⇒ y = 0;
(3) invariant if ψ([x, y], z) = ψ(x, [y, z]) for all x, y, z ∈M .

If ψ is symmetric, nondegenerate and invariant, (M,ψ) will be called a qua-
dratic Malcev algebra and ψ will be called an invariant scalar product.

Example 3.1 ([17]). The Killing form of a semisimple Malcev algebra M over
a field of characteristic zero is nondegenerate.

It follows that every simple or semisimple Malcev algebra is quadratic.

Another interesting quadratic Malcev algebra is giving as follows:
Let (M, [ , ]) be a Malcev algebra and M∗ be the dual vector space of the

underlying vector space of M . An easy computation proves that the following

product ? defines a Malcev algebra structure on the vector space M̃ = M⊕M∗:

(x+ f) ? (y + h) := [x, y] + f ◦ Ly + h ◦Rx for all (x, f), (y, h) ∈ M̃.

Where Lx(resp. Rx) is the left multiplication (resp. the right multiplication)
by x in the Malcev algebra (M, [ , ]).

Moreover, if we consider the bilinear form ψ : M̃ × M̃ → F defined by:

ψ(x+ f, y + h) = f(y) + h(x) for all (x, f), (y, h) ∈ M̃,

then (M̃, ψ) is a quadratic Malcev algebra called the trivial T ∗-extension of M
and noted by T ∗

0M ([4]). For more details about quadratic Malcev algebras
(see [1]).
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Definition. Let (T, {·, ·, ·}) be a Lie triple system. A non-degenerate sym-
metric bilinear form ψ on T is said to be invariant on the Lie triple system
(T, {·, ·, ·}) if it satisfies:

ψ(R(x, y)z, t) = ψ(z,R(y, x)t) for all x, y, z, t ∈ T.

Where R(x, y) is the endomorphism of T defined by R(x, y)(z) = {x, y, z},
for all z ∈ T. Such a form is called an invariant scalar product on (T, {·, ·, ·}).

Proposition 3.2. Let (M, [ , ], ψ) be a quadratic Malcev algebra, then ψ is
an invariant scalar product on the Lie triple system (M, {·, ·, ·}) obtained by
Example 2.5.

Proof. Let x, y, z, t ∈M .

ψ({x, y, z}, t) = 2ψ([[x, y], z], t)− ψ([[y, z], x], t)− ψ([[z, x], y], t)

= 2ψ([x, y], [z, t])− ψ([y, z], [x, t])− ψ([z, x], [y, t])

= 2ψ([[y, x], t], z)− ψ([[x, t], y], z)− ψ([[t, y], x], z)

= ψ(z, 2[[y, x], t]− [[x, t], y]− [[t, y], x])

= ψ(z, {y, x, t}).

This means that

ψ(R(x, y)z, t) = ψ(z,R(y, x)t). �

Proposition 3.3. Let M be a simple Malcev algebra. Then dimB(M) = 1.

Proof. By ([17], Corollary 2), the Lie triple system (M, {·, ·, ·}) obtained by
Example 2.5 is simple. If ψ1, ψ2 are two invariant scalar products on (M, [ , ]),
then ψ1, ψ2 become two invariant scalar products on the Lie triple system
(M, {·, ·, ·}). By using ([28], Corollary 4.6) there is a nonzero scalar λ such
that

ψ1(x, y) = λψ2(x, y), ∀x, y ∈M.

Then, dimB(M) = 1. �

Lemma 3.4. If M is a Malcev algebra admitting an invariant scalar product,
then B(M) = F(M).

Proof. Let ψ be an invariant scalar product on M and φ ∈ F(M). Let M(ψ)
and M(φ) be associated matrices of ψ and φ in some fixed basis of M . Then,
for λ ∈ F the determinant det(M(φ)−λM(ψ)) is a polinomial in λ. Hence, we
can find λ0 ∈ F such that det(M(φ)−λ0M(ψ)) 6= 0. This proves that φ−λ0ψ
is nondegenerate and thus φ = (φ− λ0ψ) + λ0ψ is nondegenerate. �

Definition. Let (M, [ , ], ψ) be a quadratic Malcev algebra and I an arbitrary
vector subspace of M .

(1) I is called an ideal (resp. a subalgebra) of M if and only if [I,M ] ⊂ I
(resp. [I, I] ⊂ I ).
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(2) I is called nondegenerate if the restriction of ψ to I×I is nondegenerate,
otherwise, it is called degenerate.

(3) We say that (M,ψ) is irreducible if every ideal of M is degenerate.

Lemma 3.5. Any Malcev algebra M such that dimB(M) = 1 is irreducible.

Proof. Suppose that dimB(M) = 1. Then by Lemma 3.4, every nonzero sym-
metric invariant bilinear form on M is nondegenerate. Moreover, since M is a
quadratic Malcev algebra, then, (see [4])

M =

n⊕
i=1

Ii,

where for all 1 ≤ i ≤ n, Ii is a nondegenerate irreducible ideal, and for all
i 6= j, Ii and Ij are orthogonal. If ψ1 denotes the Killing form of I1 then the
bilinear form ϕ on M defined by ϕ(x, y) = ψ1(x, y) whenever x, y ∈ I1 and
ϕ(x, y) = 0 otherwise, is a degenerate invariant symmetric bilinear form, which
contradicts the result in Lemma 3.4. Then M is irreducible. �

Proposition 3.6. Let M be a Malcev algebra with [M,M ] 6= 0. If the vector
space B(M) is one-dimensional, then M is a simple Malcev algebra.

Proof. By Lemma 3.4, we deduce that dim F(M) = 1 and hence every nonzero
symmetric invariant bilinear form on M is nondegenerate. This implies that
the Killing form of M is nondegenerate and M is semisimple Malcev algebra.
Let M = M1 ⊕ · · · ⊕Mn be the decomposition of M into the direct sum of
simple ideals. If ψ1 denotes the Killing form of M1 then the bilinear form φ on
M defined by φ(x, y) = ψ1(x, y) whenever x, y ∈M1 and φ(x, y) = 0 otherwise,
is a degenerate invariant symmetric bilinear form, which contradicts the result
in Lemma 3.4. �

Corollary 3.7. Let M be a Malcev algebra with [M,M ] 6= 0. Then, M is
simple if and only if dimB(M) = 1.

4. Biderivations on simple Malcev algebras

In this section, we characterize the form of skew-symmetric biderivations on
finite-dimensional simple Malcev algebras. For finite-dimensional simple Lie
algebras the form of skew-symmetric biderivations were characterized in ([8]).
Therefore, thanks to Proposition (2.3), we only have to characterize the form
of skew-symmetric biderivations on seven-dimensional simple non-Lie Malcev
algebra B.

Definition. Let M be a Malcev algebra, a linear map D : M −→M is called
derivation on M , if it satisfies the following identity:

D([x, y]) = [D(x), y] + [x, D(y)]

for all x, y ∈M.
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Definition. A bilinear map δ : M × M −→ M is called skew-symmetric
biderivation on M , if it satisfies the following identities:

δ(x, y) = −δ(y, x),

δ(x, [y, z]) = [δ(x, y), z] + [y, δ(x, z)]

for all x, y, z ∈M.

Now, let δ be a skew-symmetric biderivation of the simple seven dimensional
non-Lie Malcev algebra B and x, y ∈ B such that x =

∑7
i=1 xiei and y =∑7

i=1 yiei. Then by the bilinearity of δ, we obtain,

δ(x, y) =

7∑
i=1

7∑
j=1

xiyjδ(ei, ej).

The map δx : B −→ B, which is defined by δx(y) = δ(x, y) is a derivation
of B, since δ is a skew-symmetric biderivation of B. Therefore, we reduce our
study to characterize the form of derivations of the algebra B.

The following lemma gives the form of every derivation on B, we obtain this
by computations with a Maple mathematical software.

Lemma 4.1. Let D be a derivation of the simple seven dimensional non-Lie
Malcev algebra B. Then, the matrix of D is of the form:

MD =



0 a12 a13 a14 a15 a16 a17
αa15 a22 a23 a24 0 −αa14

2
αa13
2

αa16 a32 a33 a34
αa14
2 0 −αa12

2
αa17 a42 a43 −a33 − a22 −αa13

2
αa12
2 0

αa12 0 a17 −a16 −a22 −a32 −a42
αa13 −a17 0 a15 −a23 −a33 −a43
αa14 a16 −a15 0 −a24 −a34 a33 + a22


,

where α, aij ∈ F.

By Lemma 4.1, the matrix Mei of δei , for i = 1, . . . , 7 is of the form

Mei =



0 ai12 ai13 ai14 ai15 ai16 ai17

αai15 ai22 ai23 ai24 0
−αai14

2
αai13
2

αai16 ai32 ai33 ai34
αai14
2 0

−αai12
2

αai17 ai42 ai43 −ai33 − ai22
−αai13

2
αai12
2 0

αai12 0 ai17 −ai16 −ai22 −ai32 −ai42
αai13 −ai17 0 ai15 −ai23 −ai33 −ai43
αai14 ai16 −ai15 0 −ai24 −ai34 ai33 + ai22


.
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Since δ is skew-symmetric, then, δ(ei, ei) = 0 for i = 1, . . . , 7. Therefore

Me1 =



0 0 0 0 0 0 0
0 a122 a123 a124 0 0 0
0 a132 a133 a134 0 0 0
0 a142 a143 −a133 − a122 0 0 0
0 0 0 0 −a122 −a132 −a142
0 0 0 0 −a123 −a133 −a143
0 0 0 0 −a124 −a134 a133 + a122


,

Me2 =



0 0 a213 a214 a215 0 0

αa215 0 a223 a224 0
−αa214

2
αa213
2

0 0 a233 a234
αa214
2 0 0

0 0 a243 −a233
−αa213

2 0 0
0 0 0 0 0 0 0

αa213 0 0 a215 −a223 −a233 −a243
αa214 0 −a215 0 −a224 −a234 a233


,

Me3 =



0 a312 0 a314 0 a316 0

0 a322 0 a324 0
−αa314

2 0

αa316 a332 0 a334
αa314
2 0

−αa312
2

0 a342 0 −a322 0
αa312
2 0

αa312 0 0 −a316 −a322 −a332 −a342
0 0 0 0 0 0 0

αa314 a316 0 0 −a324 −a334 a322


,

Me4 =



0 a412 a413 0 0 0 a417
0 a422 a423 0 0 0

αa413
2

0 a432 a433 0 0 0
−αa412

2

αa417 a442 a443 0
−αa413

2
αa412
2 0

αa412 0 a417 0 −a422 −a432 −a442
αa413 −a417 0 0 −a423 −a433 −a443

0 0 0 0 0 0 0


,

Me5 =



0 a512 0 0 0 a516 a517
0 0 0 0 0 0 0

αa516 a532 a533 a534 0 0
−αa512

2

αa517 a542 a543 −a533 0
αa512
2 0

αa512 0 a517 −a516 0 −a532 −a542
0 −a517 0 0 0 −a533 −a543
0 a516 0 0 0 −a534 a533


,
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Me6 =



0 0 a613 0 a615 0 a617
αa615 a622 a623 a624 0 0

αa613
2

0 0 0 0 0 0 0

αa617 a642 a643 −a622
−αa613

2 0 0
αa612 0 a617 0 −a622 0 −a642
αa613 −a617 0 a615 −a623 0 −a643

0 0 −a615 0 −a624 0 a622


,

Me7 =



0 a712 0 a714 a715 a716 0

αa715 a722 a723 a724 0
−αa714

2 0

αa716 a732 a733 a734
αa714
2 0 0

0 0 0 0 0 0 0
0 0 0 −a716 −a722 −a732 0
0 0 0 a715 −a723 −a733 0

αa714 a716 −a715 0 −a724 −a734 0


.

Also, we have δ(e1, ei) = −δ(ei, e1) for i = 2, . . . , 7. Then, we deduce the
following Equations:

(4.1) a122 = −αa215,
a132 = a142 = a213 = a214 = 0,

a133 = −αa316,
a123 = a143 = a312 = a314 = 0,

(4.2) a133 + a122 = αa417,

a124 = a134 = a412 = a413 = 0, a433 = −a422,
a122 = αa512,

a124 = a123 = a516 = a517 = 0,

(4.3) a133 = αa613,

a132 = a134 = a612 = a615 = a617 = 0,

a133 + a122 = −αa714,
a142 = a143 = a715 = a716 = 0 and a733 = −a722.

Since δ(e2, ei) = −δ(ei, e2) for i = 3, . . . , 7 and by using the above equations,
we have

a215 = a316,

a223 = −a322, a233 = −a332, a243 = −a342, a224 = −a422, a234 = −a432, a233 = a442,

(4.4) a215 = a417,

a215 = −a512,
a223 = −a517, a224 = a516 = a214 = a532 = a213 = a542 = 0, a233 = −a617,

a214 = a622 = a234 = a617 = a642 = 0 and a233 = a716 = a213 = a722 = a243 = a712 =
a732 = 0.
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Furthermore, since δ(e3, ei) = −δ(ei, e3) for i = 4, . . . , 7, we get

a324 = −a423, a334 = −a433, a322 = a443,

a316 = a417,

a314 = a533 = a543 = a322 = a324 = a517 = 0,

a316 = −a613,

a314 = a623 = a312 = a643 = a332 = a643 = a334 = a615 = 0

and

a322 = a715 = a213 = a722 = a312 = a733 = a342 = a723 = 0.

Moreover, we have δ(e4, ei) = −δ(ei, e4) for i = 5, 6, 7. It follows that:

a422 = a516 = a423 = a534 = 0, a433 = a615 = a432 = a624 = 0,

a417 = −a714
and

a413 = a724 = a412 = a734 = a442 = a716 = a443 = a715 = 0.

Since δ(e5, ei) = −δ(ei, e5) for i = 6, 7 and δ(e6, e7) = −δ(e7, e6), we
deduce that:

(4.5) a512 = a613

a512 = a714.

a613 = a714

and a642 = a732 = 0.
Therefore, from the above equations, the matrix Mei for i = 1, . . . , 7, be-

comes

Me1 =



0 0 0 0 0 0 0
0 a122 0 0 0 0 0
0 0 a133 0 0 0 0
0 0 0 −a133 − a122 0 0 0
0 0 0 0 −a122 0 0
0 0 0 0 0 −a133 0
0 0 0 0 0 0 a133 + a122


,

Me2 =



0 0 0 0 a215 0 0
αa215 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 a215 0 0 0
0 0 −a215 0 0 0 0


,
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Me3 =



0 0 0 0 0 a316 0
0 0 0 0 0 0 0

αa316 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −a316 0 0 0
0 0 0 0 0 0 0
0 a316 0 0 0 0 0


,

Me4 =



0 0 0 0 0 0 a417
0 0 0 0 0 0 0
0 0 0 0 0 0 0

αa417 0 0 0 0 0 0
0 0 a417 0 0 0 0
0 −a417 0 0 0 0 0
0 0 0 0 0 0 0


,

Me5 =



0 a512 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
−αa512

2

0 0 0 0 0
αa512
2 0

αa512 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Me6 =



0 0 a613 0 0 0 0

0 0 0 0 0 0
αa613
2

0 0 0 0 0 0 0

0 0 0 0
−αa613

2 0 0
0 0 0 0 0 0 0

αa613 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Me7 =



0 0 0 a714 0 0 0

0 0 0 0 0
−αa714

2 0

0 0 0 0
αa714
2 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

αa714 0 0 0 0 0 0


.

From (4.2), (4.1) and (4.4), we get

(4.6) a133 = −2a122.

By using (4.6), (4.3) and (4.5), we obtain

(4.7)
−3

α
a122 = 0.
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Using (4.7) we deduce
δ(ei, ej) = 0

for i, j = 1, . . . , 7. Then δ(x, y) = 0 for all x, y ∈ B.
Furthermore, the following proposition holds:

Proposition 4.2. The simple seven dimensional non-Lie Malcev algebra B
has no nontrivial skew-symmetric biderivation.

Lemma 4.3 ([8]). Let (M, [ , ]) be a simple finite-dimensional Lie algebra
over an algebraically closed field of characteristic zero F. Then, every skew-
symmetric biderivation δ of M is of the form δ(x, y) = λ[x, y], x, y ∈ M , for
some λ ∈ F.

To conclude this article, we summarize our second main result which is a
generalisation of Lemma 4.3.

Theorem 4.4. Let (M, [ , ]) be a simple finite-dimensional Malcev algebra
over an algebraically closed field of characteristic zero F. Then, every skew-
symmetric biderivation δ of M is of the form δ(x, y) = λ[x, y], x, y ∈ M , for
some λ ∈ F.

Proof. From Proposition in [11], we have two cases.
In the case where M is a finite-dimensional simple Lie algebra, the result

comes from Lemma 4.3.
In the case where M is the simple seven dimensional non-Lie Malcev algebra,

the result comes from Proposition 4.2. �
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