DOI QR코드

DOI QR Code

SHIODA-TATE FORMULA FOR AN ABELIAN FIBERED VARIETY AND APPLICATIONS

  • Oguiso, Keiji (DEPARTMENT OF ECONOMICS KEIO UNIVERSITY, SCHOOL OF MATHEMATICS KOREA INSTITUTE FOR ADVANCED STUDY)
  • Published : 2009.03.31

Abstract

We give an explicit formula for the Mordell-Weil rank of an abelian fibered variety and some of its applications for an abelian fibered $hyperk{\ddot{a}}hler$ manifold. As a byproduct, we also give an explicit example of an abelian fibered variety in which the Picard number of the generic fiber in the sense of scheme is different from the Picard number of generic closed fibers.

Keywords

References

  1. W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Second edition, Springer-Verlag, Berlin, 2004.
  2. A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782. https://doi.org/10.4310/jdg/1214438181
  3. F. Campana, Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math. 63 (1981), no. 2, 187–223. https://doi.org/10.1007/BF01393876
  4. F. Campana, Reduction d'Albanese d'un morphisme propre et faiblement kahlerien. I, Compositio Math. 54 (1985), no. 3, 373–398.
  5. F. Campana, Un critere d'isotrivialite pour les familles de varietes hyperkäleriennes sans facteur algebrique, math.AG/0408148.
  6. G. Cornell and J. H. Silverman, Arithmetic Geometry, Springer-Verlag, New York, 1986.
  7. M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau Manifolds and Related Geometries, Springer-Verlag, Berlin, 2003.
  8. M. Hindry, A Pacheco, and R. Wazir, Fibrations et conjecture de Tate, J. Number Theory 112 (2005), no. 2, 345–358. https://doi.org/10.1016/j.jnt.2004.05.016
  9. B. Kahn, Démonstration géométrique du théorème de Lang-Néron, math.AG/0703063.
  10. Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93–163. https://doi.org/10.2307/1971417
  11. Y. Kawamata, On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math. 8 (1997), no. 5, 665–687. https://doi.org/10.1142/S0129167X97000354
  12. S. Kondō, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), no. 1, 75–98. https://doi.org/10.2969/jmsj/04410075
  13. D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), no. 1, 79–83. https://doi.org/10.1016/S0040-9383(98)00003-2
  14. D. Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic ymplectic manifolds, Math. Res. Lett. 7 (2000), no. 4, 389–391. https://doi.org/10.4310/MRL.2000.v7.n4.a4
  15. D. Matsushita, Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math. 127 (2005), no. 2, 243–259. https://doi.org/10.1353/ajm.2005.0009
  16. B. Moishezon, On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions. I, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 133–174.
  17. K. Oguiso, Local families of K3 surfaces and applications, J. Algebraic Geom. 12 (2003), no. 3, 405–433. https://doi.org/10.1090/S1056-3911-03-00362-X
  18. J. Sawon, Deformations of holomorphic Lagrangian fibrations, math.AG/0509223. https://doi.org/10.1090/S0002-9939-08-09473-2
  19. C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988), no. 2, 177–199. https://doi.org/10.1007/BF01215188
  20. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59. https://doi.org/10.2969/jmsj/02410020
  21. T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240.
  22. T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), 359–373, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999. https://doi.org/10.2277/0521646596
  23. C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste, 989/Bergen, 1989), 294–303, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992.
  24. F. Campana, Reduction d'Albanese d'un morphisme propre et faiblement kahlerien. II, Compositio Math. 54 (1985), no. 3, 399–416.
  25. Addendum: “On fibre space tructures of a projective irreducible symplectic manifold”, Topology 40 (2001), no. 2, 431–432. https://doi.org/10.1016/S0040-9383(99)00048-8

Cited by

  1. Computing Néron–Severi groups and cycle class groups vol.151, pp.04, 2015, https://doi.org/10.1112/S0010437X14007878
  2. Fibrations on four-folds with trivial canonical bundles vol.171, pp.1, 2014, https://doi.org/10.1007/s10711-013-9890-x