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FINITE GROUPS WITH A CYCLIC NORM QUOTIENT

Junxin Wang

Abstract. The norm N(G) of a group G is the intersection of the nor-
malizers of all the subgroups of G. In this paper, the structure of finite
groups with a cyclic norm quotient is determined. As an application of
the result, an interesting characteristic of cyclic groups is given, which as-
serts that a finite group G is cyclic if and only if Aut(G)/P (G) is cyclic,
where P (G) is the power automorphism group of G.

1. Introduction

The norm N(G) of a group G, first introduced by R. Baer [1] in 1934, is
the intersection of the normalizers of all the subgroups of G. It is clear that
N(G) is a characteristic subgroup of G and it contains the center Z(G). Also
N(G) itself is a Dedekind group, and every element of N(G) induces a power
automorphism on G. Many authors have investigated both N(G) and how
N(G) influences the structure of G (see [2], [3], [4], [9], [10] and [11]). For
instance, Schenkman proved that N(G) ≤ Z2(G) for any group G (see [9]),
and Baer showed that a 2-group G must be a Dedekind group if the N(G) is
nonabelian (see [2]). In [10] and [11], the authors have determined the structure
of a finite group G satisfying |G : N(G)| = p or pq, where p, q are primes. In
this paper, finite groups with a cyclic norm quotient are determined, see Section
2.

Based on the above result, we will establish a characteristic of cyclic groups.
Recall that a power automorphism of a group G is an automorphism that leaves
every subgroup of G invariant. Under such an automorphism, every element of
G is mapped to one of its powers. All power automorphisms of G constitute
an abelian normal subgroup, denoted by P (G), of Aut(G). The structure of G
and P (G) are strictly linked (for example, see [5], [12]), especially the quotient
group Aut(G)/P (G) strongly influences the structure of G. In [11], groups
satisfying |Aut(G)/P (G)| = 1, p or pq are completely clarified. In Section 3,
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we shall prove that a finite group is cyclic if and only if Aut(G)/P (G) is cyclic.
This characteristic of cyclic groups generalizes some results in [11].

All groups considered in this paper are finite. In the following, G = B ⋉ A

denotes G is a semidirect product of two subgroups A and B, where A is
normalized by B, and exp(G) denotes the exponent of G. Other notation and
terminology not mentioned here are standard, see [6] for instance.

2. Groups with cyclic norm quotient

In this section, we will determine the structure of finite groups with cyclic
norm quotient.

Lemma 2.1. A group G is a Dedekind group if and only if G = N(G).

Lemma 2.2 ([10, Lemma 2.1]). Let A and B be subgroups of a finite group G

such that G = A×B. If (|A|, |B|) = 1, then N(G) = N(A)×N(B).

Theorem 2.3. Let G be a finite group. Then G/N(G) is cyclic if and only if

G is nilpotent with P/N(P ) being cyclic for every Sylow subgroup P of G.

Proof. If G/N(G) is cyclic, then G/Z2(G) is cyclic by [9], and so G is nilpotent.
Suppose that G = P1 × P2 × · · · × Pt, where Pi ∈ Sylpi

(G), i = 1, 2, . . . , t. By
Lemma 2.2, we have N(G) = N(P1)×N(P2)×· · ·×N(Pt). Hence, G/N(G) =
P1/N(P1)× · · · × Pt/N(Pt), and each Pi/N(Pi) is cyclic.

Conversely, if G is nilpotent, then G/N(G) = P1/N(P1) × · · · × Pt/N(Pt),
where Pi ∈ Sylpi

(G), i = 1, 2, . . . , t. If each Pi/N(Pi) is cyclic, then G/N(G)
is cyclic. �

From Lemma 2.1 and Theorem 2.3 we see that, to determine groups with
cyclic norm quotient is only need to determine non-Dedekind p-groups with
cyclic norm quotient.

Lemma 2.4. Let P be a finite p-group. If N(P ) < P , then N(P ) is abelian.

Proof. Since N(P ) is a Dedekind group, it follows from [8, Theorem 5.3.7] and
[5, Theorem 6.5.1] that N(P ) is abelian. �

Lemma 2.5. Let P be a p-group with N(P ) < P . If P = 〈N(P ), a〉 for some

a ∈ P , then o(a) > exp(N(P )).

Proof. By Lemma 2.4, N(P ) is abelian. Let y be an element of maximal order
in N(P ). Then N(P ) = 〈y〉 × B for some B ≤ N(P ). If ay = a, then there
exists b ∈ B such that ab 6= a, and so ayb 6= a, o(yb) = o(y). This shows that
N(P ) has an element, say g, of maximal order such that ag 6= a.

Suppose that C〈a〉(g) = 〈ap
r

〉, where r ≥ 1. Let x = ap
r−1

. Suppose that

o(x) = pn and xg = xt. Clearly n ≥ 2 since xg 6= x. Noticing that [xp, g] = 1,

we have tp ≡ p (mod pn) and t ≡ 1 (mod pn−1), and therefore xg = x1+µpn−1

for some positive integer µ with (µ, p) = 1. Choose a positive integer δ such

that µδ ≡ 1 (mod p). Then o(g) = o(gδ), and xgδ

= x1+µδpn−1

= x1+pn−1

.
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Replacing g by gδ, we may assume that xg = x1+pn−1

. Let Q = 〈g, x〉. It

is clear that Q′ = 〈xpn−1

〉 ≤ Z(Q) is of order p, and then for any u, v ∈ Q,
(uv)p = upvp if p > 2, and (uv)4 = u4v4 if p = 2. Take any z ∈ CP (Q).
Since 〈x, z〉 is abelian, according to [8, Theorem 13.4.3] there exists an integer
l such that zg = zl, xg = xl, from which we deduce that l ≡ 1 (mod o(z)),
l ≡ 1 + pn−1 (mod pn). If o(z) ≥ pn, then l ≡ 1 (mod pn), and therefore
pn−1 ≡ 0 (mod pn), a contradiction. Hence o(z) < pn and exp(CP (Q)) < pn,
especially exp(Z(P )) < pn. Also as gp ∈ Z(Q) ≤ CP (Q), we get that o(gp) <
pn, and so o(g) ≤ o(x).

If o(x) < o(a), then o(a) > exp(N(P )) by the maximality of g. The remain-
der of the proof is to deal with the situation o(x) = o(a), namely x = a. Now
assume by way of contradiction that o(g) = o(x). Let pk be the order of the
subgroup 〈x〉 ∩ 〈g〉, where 0 ≤ k < n. We consider the following two cases:

Case 1: p = 2 and k = n − 1. Then 〈g2〉 = 〈x2〉, g2
n−1

= x2n−1

, and there

exists an odd integer s such that g2 = x−2s. It follows that (gxs)2 = x2n−1

.

Write x1 = gxs. Then (x1)
2 = x2n−1

= g2
n−1

and Q = 〈g, x1〉. If n ≥ 3,

then o(g2
n−2

x1) = 2 and g acts trivially on 〈g2
n−2

x1〉, which implies that Q

is abelian since Q = 〈g, g2
n−2

x1〉, a contradiction. Hence n = 2, and Q =
〈g, x | x4 = 1, g2 = x2, xg = x−1〉 is a quaternion group of order 8, and Z(P )
is elementary abelian. Moreover, since N(P )/Z(P ) acts faithfully on 〈x〉, we
have N(P )/Z(P ) is of order 2, and N(P ) = 〈Z(P ), g〉. So P = 〈g, x〉Z(P ) =
〈g, x〉 × B for some B ≤ Z(P ). By [8, Theorem 5.3.7], we know that P is a
Dedekind group and P = N(P ), a contradiction.

Case 2: either p = 2 and k ≤ n− 2 or p > 2. Then 〈gp
n−k

〉 = 〈xpn−k

〉, and

there exists an integer s such that gp
n−k

= x−spn−k

, where (p, s) = 1. It follows

that (gxs)p
n−k

= 1. Write x1 = gxs. Then x
pn−k

1 = 1 and Q = 〈g, x1〉. Since
|Q| = pnpn−k, we have o(x1) = pn−k and 〈g〉 ∩ 〈x1〉 = 1. Thus Q = 〈g〉⋉ 〈x1〉
is a semidirect product of 〈g〉 and 〈x1〉, and n− k ≥ 2. Let m = n − k. Note

that 1 6= [x1, g] ∈ Q′, and so o([x1, g]) = p. Consequently, 〈[x1, g]〉 = 〈xpm−1

1 〉

and x
g
1 = x

1+jpm−1

1 for some positive integer j, where (j, p) = 1. It is no loss

to assume that xg
1 = x

1+pm−1

1 . Let i be an integer such that (gx1)
g = (gx1)

i.

Then gx
1+pm−1

1 = gixi
1[x1, g]

i(i−1)
2 , from which we get

1 ≡ i (mod pn ) and 1 + pm−1 ≡ i+
i(i− 1)

2
pm−1 (mod pm).

Since m ≤ n, the former congruence implies that 1 ≡ i (mod pm), and so
i(i−1)

2 pm−1 ≡ 0 (mod pm). It follows from the latter congruence expression

that pm−1 ≡ 0 (mod pm), a contradiction. This completes our proof. �

Theorem 2.6. Let P be a p-group with N(P ) < P . Then P/N(P ) is cyclic

if and only if P = 〈B, g〉 ⋉ 〈x〉, where 〈B, g〉 is an abelian group generated by
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a subgroup B and an element g, 〈x〉 E P , and the subgroup B, the elements g

and x satisfy the following properties:
(i) o(x) = pn+m, o(g) = pr, 1 ≤ m ≤ r ≤ n, exp(B) ≤ pn, and n+m ≥ 3 if

p = 2;
(ii) xg = x1+pn

, [B, x] = 1.

Proof. “ ⇒ ” By assumption, there exists an element x ∈ P such that x 6∈ N(P )
and P = N(P )〈x〉. Suppose thatN(P )∩〈x〉 = 〈xpm

〉. Clearlym ≥ 1. We claim

that xpm

is of maximal order in N(P ). It suffices to shows that o(xpm−1

) >

exp(N(P )). Let Q = N(P )〈xpm−1

〉. Then |Q : N(P )| = p and N(P ) ≤ N(Q).

If N(P ) = N(Q), then Q = 〈N(Q), xpm−1

〉 with xpm−1

6∈ N(Q), and by Lemma

2.5 we have o(xpm−1

) > exp(N(P )). If N(P ) < N(Q), then Q = N(Q) and Q

is a Dedekind group. Note that [N(P ), xpm−1

] 6= 1, so p = 2, and o(xpm−1

) = 4.
It follows that o(x) = pm+1 and there exists an element g ∈ N(P ) such that

[g, xpm−1

] 6= 1. Suppose that 〈[x, g]〉 = 〈xpk

〉. According to [9, Theorem],

xpk

∈ Z(P ) and therefore there exists an odd integer δ such that xpk

= [x, g]δ =

[x, gδ]. Hence, without loss of generality, we may assume that [x, g] = xpk

, and

then xg = x1+pk

. Consequently xpm

= (xpm

)g = xpm

xpm+k

, and k ≥ 1. If

k > 1, it is easy to check that (xpm−1

)g = xpm−1

, a contradiction. Hence
xg = x1+p, and [x, g] = xp ∈ Z(P ) ∩ 〈x〉 ≤ N(P ) ∩ 〈x〉 = 〈xpm

〉. From which
we deduce that m = 1 and |P : N(P )| = p, and therefore P = Q is Dedekind,
a contradiction. This shows that our claim is true.

By the above result, we get N(P ) = T × (N(P )∩ 〈x〉) for some subgroup T

of N(P ). Therefore P = T ⋉ 〈x〉. If T has an element b such that xb = x−1,
then (bx)2 = b2. However, since P = 〈N(P ), x〉 = 〈N(P ), bx〉 and bx 6∈ N(P ),
o(b) < o(bx) by Lemma 2.5 , a contradiction. It follows from [7, Theorem 2.19]
that T/CT (x) is cyclic and o(x) ≥ 8 if p = 2. Let B = CT (x). Then there
exists g ∈ T such that T = 〈B, g〉, where [B, x] = 1.

It is clear that C〈x〉(g) = 〈x〉 ∩ Z(P ) = 〈x〉 ∩N(P ) = 〈xpm

〉. Suppose that

o(xpm

) = pn. Then n ≥ 1 and o(x) = pn+m. Suppose 〈[x, g]〉 = 〈xpi

〉, i ≥ 0.

Then xpi

∈ 〈x〉 ∩ Z(P ) = 〈xpm

〉 and so i ≥ m. Also there exists an integer k

prime to p such that [x, g]k = xpi

or [x, gk] = xpi

. Replacing g by gk, we may

assume that [x, g] = xpi

and so xg = x1+pi

. Since C〈x〉(g) = 〈xpm

〉, it follows

that i = n, and xg = x1+pn

. Now suppose that o(g) = pr. It is easy to verify
that g induces an automorphism in 〈x〉 of order pm. Thus m ≤ r. Moreover,
exp(N(P )) ≤ pn by the maximality of xpm

in N(P ), especially r ≤ n and
exp(B) ≤ pn.

“ ⇐ ” Conversely, let P = 〈B, g〉⋉〈x〉 be a group with the stated properties.
It is easy to verify that 〈x〉 ∩ Z(P ) = 〈xpm

〉 and P ′ = 〈[x, g]〉 = 〈xpn

〉 ≤ Z(P ).
Let h be any element of P . Then h can be written as h = bgkxi, where b ∈ B,
and k, i are non-negative integers. Clearly, hg = bgkxi(1+pn). Since

h1+pn

= (bgkxi)(bgkxi)p
n
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= (bgkxi)(bgk)p
n

xipn

[xi, bgk]p
n(pn−1)/2

= (bgkxi)xipn

xikp2n(pn−1)/2,

we see that h1+pn

= (bgkxi)xipn

= bgkxi(1+pn) = hg if p > 2 or p = 2 and
m < n, or p = 2,m = n and 2 | ik. For the case that p = 2,m = n and 2 ∤ ik,
noticing n > 1, we have

h1+2n+22n−1

= (bgkxi)(bgk)2
n+22n−1

xi2nxi22n−1

[xi, bgk]

(

2n+22n−1

2

)

= (bgkxi)xi2nx22n−1

(x22n−1

)ik(2
n−1+1)(2n+22n−1−1)

= (bgkxi)xi2nx22n−1

x22n−1

= bgkxi(1+2n)

= hg.

Hence g ∈ N(P ), and it follows that

N(P ) = N(P ) ∩ (〈B, g〉⋉ 〈x〉) = 〈B, g〉 × (N(P ) ∩ 〈x〉) = 〈B, g〉 × 〈xpm

〉.

Consequently, P/N(P ) is cyclic of order pm. This completes the proof. �

Theorem 2.7. Let P be a p-group with N(P ) < P . If P/N(P ) is cyclic, then

o(h) > exp(N(P )) for any h ∈ P −N(P ).

Proof. Suppose that P = 〈N(P ), x〉 with |P/N(P )| = pm, where m ≥ 1. Since
P/N(P ) is cyclic, there exists an unique subgroup series

N(P ) = Pm < Pm−1 < · · · < P1 < P0 = P,

satisfying |Pi−1 : Pi| = p, i = 1, 2, . . . ,m. Clearly N(P ) ≤ N(Pi). If
N(P ) < N(Pi) for some Pi, then Pm−1 ≤ N(Pi) and Pm−1 is a Dedekind group.

However, from the proof of Theorem 2.6, we see that Pm−1 = 〈N(P ), xpm−1

〉
and |Pm−1 : N(Pm−1)| = p, a contradiction. Hence N(P ) = N(Pi) for all Pi.

Let h be any element in P −N(P ). Then there must exists a subgroup Pk

such that Pk = 〈N(P ), h〉. Since N(P ) = N(Pk), it follows from Lemma 2.5
that o(h) > exp(N(P )). �

Remark 2.8. Theorem 2.7 is not necessarily true if we delete the condition
that P/N(P ) is cyclic. For example, let P be a p-group of order p3 with the
following defining relation

P = 〈a, b | ap = bp = cp = 1, [a, b] = c, ac = ca, bc = cb〉.

Since a, b ∈ CP (N(P )), we have N(P ) = Z(P ) is of order p. Clearly a 6∈ N(P ),
but o(a) = exp(N(P )).

Lemma 2.9 ([11, Lemma 2.7]). Let B be a maximal subgroup of an abelian

p-group Q. Then there exist an element u ∈ Q and a subgroup A ≤ B such

that Q = 〈u〉 ×A.
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Corollary 2.10 ([10, Theorem 1.4]). A finite p-group P satisfies |P : N(P )| =
p if and only if P = R×A, where

R = 〈x, u | xpn+1

= upk

= 1, xu = x1+pn

, 1 ≤ k ≤ n, and n ≥ 2 if p = 2〉,

and A is an abelian group with exp(A) ≤ pn.

Proof. We only prove the necessity. Assume that |P : N(P )| = p. Then by
Theorem 2.6, there exist B ≤ P and g, x ∈ P such that P = 〈B, g〉⋉〈x〉, where
o(x) = pn+1, 〈B, g〉 is abelian with exp(〈B, g〉) ≤ pn, xg = x1+pn

, [B, x] = 1,
and n ≥ 2 if p = 2. Noticing that gp ∈ Z(P ), without loss of generality,
we may assume that gp ∈ B. Hence B is a maximal subgroup of 〈B, g〉. It
follows from Lemma 2.9 that there exist A ≤ B and u ∈ 〈B, g〉 such that
〈B, g〉 = A × 〈u〉. Clearly 〈[x, u]〉 = P ′ = 〈[x, g]〉 = 〈xpn

〉, and so there exists
an integer δ coprime to p such that [x, uδ] = [x, u]δ = xpn

. Replacing u by uδ,
we can assume that [x, u] = xpn

and therefore xu = x1+pn

. Now let R = 〈x, u〉.
Then P = 〈B, g〉⋉ 〈x〉 = A×R as desired. The proof is complete. �

Remark 2.11. By Theorem 2.6, a finite p-group P satisfying P/N(P ) is cyclic
is a semidirect product of an abelian subgroup 〈B, g〉 and a cyclic normal
subgroup 〈x〉, where B, g and x satisfy the properties stated in Theorem 2.6.
In general, if |P : N(P )| > p or m ≥ 2, then the subgroup 〈B, g〉 of P may not
necessarily be decomposed as 〈B, g〉 = A × 〈u〉 with A ≤ Z(P ). For example,
let B = 〈b〉, o(b) = pm, o(g) = pm+1, and 〈b〉 ∩ 〈g〉 be of order p, where m ≥ 2.
Let K = 〈b, g〉. It is clear that CK(x) = 〈b〉. Assume that there exist A ≤ K

and u ∈ K such that K = A× 〈u〉 and A ≤ Z(P ). Then P ′ = 〈[x, u]〉 = 〈xpn

〉.
Similar to the proof of Corollary 2.10, we may assume that xu = x1+pn

. Hence
xu = xg and u = cg, where c ∈ CK(x). It follows that upm

= gp
m

6= 1, and
upm

∈ CK(x). Since CK(x) is cyclic, we obtain that A = 1 and K is cyclic, a
contradiction.

3. A characteristic of finite cyclic groups

In this section, as an application of Theorem 2.6, we shall prove a charac-
teristic of cyclic groups: A finite group G is cyclic if and only if Aut(G)/P (G)
is cyclic. For convenience of statement, in the following, we will call a group G

a C-group if Aut(G)/P (G) is cyclic. Since G/N(G) . Aut(G)/P (G), we see
that if G is a C-group, then G/N(G) is cyclic, and so G is nilpotent and every
Sylow subgroup of G is either a Dedekind group or a group with a non-trivial
cyclic norm quotient whose structure has been determined by Theorem 2.6.
The proof will be given following several lammas.

Lemma 3.1. A non-cyclic abelian p-group R can not be a C-group.

Proof. Without loss of generality, we may assume that R = 〈x1〉 × 〈x2〉, where
o(x1) = pk1 , o(x2) = pk2 . Then two automorphisms α, β of R are given by

xα
1 = x1, x

α
2 = x2x

pk1−1

1 ; x
β
1 = x1x

pk2−1

2 , x
β
2 = x2.
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Clearly, o(α) = o(β) = p, and α, β 6∈ P (R). If R is a C-group, then there exist

an integer i and some γ ∈ P (R) such that α = βiγ. However, xα
2 = x2x

pk1−1

1 6∈

〈x2〉, x
βiγ
2 = x

γ
2 ∈ 〈x2〉, a contradiction. �

Lemma 3.2. A non-abelian Dedekind 2-group R can not be a C-group.

Proof. By [8, Theorem 5.3.7], R = Q8 × A, where Q8 is the quaternion group
of order 8, and A is elementary abelian. Let Q8 = 〈a, b〉. Define two automor-
phisms α and β of R by

aα = b, bα = a, [A,α] = 1; aβ = b, bβ = ab, [A, β] = 1.

Clearly, α, β 6∈ P (R), and o(α) = 2, o(β) = 3. If R is a C-group, then 6 | o(αβ).
However, o(αβ) = 4 since aαβ = ab, bβ = b, a contradiction. �

Lemma 3.3. A p-group R = 〈B, g〉 ⋉ 〈x〉 with B, g and x being the same as

in Theorem 2.6 can not be a C-group.

Proof. Consider the automorphism α of R induced by xpm−1

. It is easy to see

that o(α) = p, xα = x, gα = gx−pn+m−1

, and α 6∈ P (R).
If p > 2, or p = 2 and r ≥ 2, let β be the automorphism of R of order

2 defined by xβ = x−1, yβ = y for all y ∈ 〈B, g〉. Assume that 〈gxpm

〉β =
〈gxpm

〉. Then there exists an integer k such that gx−pm

= gkxkpm

, and so
1 ≡ k (mod pr) and −pm ≡ kpm (mod pn+m). Therefore 1 ≡ k (mod pr) and
−1 ≡ k (mod pn). Consequently, 1 ≡ −1 (mod pr), a contradiction. Hence we

have proved that β 6∈ P (R). Moreover, since xαβ = x−1, gαβ = gxpn+m−1

, it is
clear that o(αβ) = 2 and αβ 6∈ P (R). If R is a C-group, then 2p | o(αβ) when
p > 2, and αβ ∈ P (R) when p = 2, a contradiction.

For the case p = 2 and r = 1, it must be m = 1 and n ≥ 2. Note that
(gx)2

n

= x2n , and so o(gx) = 2n+1, R = 〈B, g〉 ⋉ 〈gx〉 and (gx)g = (gx)1+2n .
It follows that the map: x 7→ gx, y 7→ y for all y ∈ 〈B, g〉 determines an
automorphism β of R of order 2, and β, αβ 6∈ P (R) since xαβ = gx. Similar to
the above proof, we still have that R can not be a C-group. �

Lemma 3.4. Let G be a nilpotent group. If G = R1 × R2 × · · · × Rt, where

Ri ∈ Sylpi
(G), i = 1, 2, . . . , t, then

Aut(G)/P (G) ≃ Aut(R1)/P (R1)× · · · ×Aut(Rt)/P (Rt).

Proof. Clearly Aut(G) ≃ Aut(R1)× · · · ×Aut(Rt). Also by [11, Lemma 3.11],
we have P (G) ≃ P (R1)× · · · × P (Rt). Hence

Aut(G)/P (G) ≃ Aut(R1)/P (R1)× · · · ×Aut(Rt)/P (Rt). �

Theorem 3.5. Let G be a finite group. Then G is cyclic if and only if G is a

C-group.
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Proof. The necessity is clear, we only prove the sufficiency. Let G be a C-group.
Then G is nilpotent. Suppose that G = R1×R2×· · ·×Rt, where Ri ∈ Sylpi

(G),
i = 1, 2, . . . , t. By Lemma 3.4, we see that every Ri is a C-group, and so every
Ri is either a Dedekind group or a group of prime power order with a non-trivial
cyclic norm quotient. It follows from Lemma 3.1, Lemma 3.2 and Lemma 3.3
that every Ri is cyclic, and therefore G is cyclic. �

Corollary 3.6 ([11, Theorem 3.2]). A group G is cyclic if and only if Aut(G) =
P (G).

Proof. If G is cyclic, then every automorphism of G must be a power au-
tomorphism, and so Aut(G) = P (G). Conversely, if Aut(G) = P (G), then
Aut(G)/P (G) is cyclic, and G is cyclic by Theorem 3.5. �

Corollary 3.7 ([11, Theorem 3.8]). There exists no finite group G such that

|Aut(G)/P (G)| is a prime.
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