• Title/Summary/Keyword: Mann iteration

Search Result 48, Processing Time 0.026 seconds

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF

ALMOST STABILITY OF THE MANN ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN SMOOTH BANACH SPACES

  • Liu, Z.;Kang, S.M.;Shim, S.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach space X and T : KlongrightarrowK be a strictly hemi-contractive operator. Under some conditions we obtain that the Mann iteration method with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. The results presented in this paper generalize the corresponding results in [l]-[7], [20] and others.

Mann-Iteration process for the fixed point of strictly pseudocontractive mapping in some banach spaces

  • Park, Jong-An
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.333-337
    • /
    • 1994
  • Many authors[3][4][5] constructed and examined some processes for the fixed point of strictly pseudocontractive mapping in various Banach spaces. In fact the fixed point of strictly pseudocontractive mapping is the zero of strongly accretive operators. So the same processes are used for the both circumstances. Reich[3] proved that Mann-iteration precess can be applied to approximate the zero of strongly accretive operator in uniformly smooth Banach spaces. In the above paper he asked whether the fact can be extended to other Banach spaces the duals of which are not necessarily uniformly convex. Recently Schu[4] proved it for uniformly continuous strictly pseudocontractive mappings in smooth Banach spaces. In this paper we proved that Mann-iteration process can be applied to approximate the fixed point of strictly pseudocontractive mapping in certain Banach spaces.

  • PDF

CONVERGENCE THEOREMS FOR SP-ITERATION SCHEME IN A ORDERED HYPERBOLIC METRIC SPACE

  • Aggarwal, Sajan;Uddin, Izhar;Mujahid, Samad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.961-969
    • /
    • 2021
  • In this paper, we study the ∆-convergence and strong convergence of SP-iteration scheme involving a nonexpansive mapping in partially ordered hyperbolic metric spaces. Also, we give an example to support our main result and compare SP-iteration scheme with the Mann iteration and Ishikawa iteration scheme. Thus, we generalize many previous results.

A CONVERGENCE THEOREM ON QUASI-ϕ-NONEXPANSIVE MAPPINGS

  • Kang, Shin Min;Cho, Sun Young;Kwun, Young Chel;Qin, Xiaolong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • In an infinite-dimensional Hilbert space, the normal Mann iteration has only weak convergence, in general, even for nonexpansive mappings. The purpose of this paper is to modify the normal Mann iteration to have strong convergence for a closed quasi-$\phi$-nonexpansive mapping in the framework of Banach spaces.

ON ASYMPTOTICALLY DEMICONTRACTIVE MAPPINGS IN ARBITRARY BANACH SPACES

  • Rafiq, Arif;Lee, Byung Soo
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.569-578
    • /
    • 2012
  • In this paper, the necessary and sufficient conditions for the strong convergence of a modified Mann iteration process to a fixed point of an asymptotically demicontractive mapping in real Banach spaces are considered. Presented results improve and extend the results of Igbokwe [3], Liu [4], Moore and Nnoli [6] and Osilike [7].

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF