A CONVERGENCE THEOREM ON QUASI-ϕ-NONEXPANSIVE MAPPINGS

  • Kang, Shin Min (Department of Mathematics and the RINS Gyeongsang National University) ;
  • Cho, Sun Young (Department of Mathematics Gyeongsang National University) ;
  • Kwun, Young Chel (Department of Mathematics Dong-A University) ;
  • Qin, Xiaolong (Department of Mathematics Gyeongsang National University)
  • Received : 2009.10.29
  • Accepted : 2010.01.18
  • Published : 2010.03.30

Abstract

In an infinite-dimensional Hilbert space, the normal Mann iteration has only weak convergence, in general, even for nonexpansive mappings. The purpose of this paper is to modify the normal Mann iteration to have strong convergence for a closed quasi-$\phi$-nonexpansive mapping in the framework of Banach spaces.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear opera-torequations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54.
  2. Ya. I. Alber, Metric and generalized projection operators in Banach spaces, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
  3. D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of relatively nonex-pansive operators in Banach spaces, J. Appl. Anal. 7 (2001), 151-174. https://doi.org/10.1515/JAA.2001.151
  4. Y. Censor and S. Reich, Iterationsof paracontractionsand firmly nonexpansive opera-torswith applications to feasibility and optimization, Optim. 37 (1996), 323-339. https://doi.org/10.1080/02331939608844225
  5. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
  6. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  7. S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively non-expansive mappings in a Banach space, J. Approx. Theory 134 (2005), 257-266. https://doi.org/10.1016/j.jat.2005.02.007
  8. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  9. S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938-945. https://doi.org/10.1137/S105262340139611X
  10. X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965. https://doi.org/10.1016/j.na.2006.08.021
  11. X. Qin, Y. J. Cho, S. M. Kang and H. Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-$\phi$-nonexpansive mappings, Appl. Math. Lett. 22 (2009), 1051-1055. https://doi.org/10.1016/j.aml.2009.01.015
  12. X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), 20-30. https://doi.org/10.1016/j.cam.2008.06.011
  13. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  14. S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
  15. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
  16. W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062