Acknowledgement
Supported by : Dong-A University
References
- Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear opera-torequations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54.
- Ya. I. Alber, Metric and generalized projection operators in Banach spaces, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
- D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of relatively nonex-pansive operators in Banach spaces, J. Appl. Anal. 7 (2001), 151-174. https://doi.org/10.1515/JAA.2001.151
- Y. Censor and S. Reich, Iterationsof paracontractionsand firmly nonexpansive opera-torswith applications to feasibility and optimization, Optim. 37 (1996), 323-339. https://doi.org/10.1080/02331939608844225
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
- W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively non-expansive mappings in a Banach space, J. Approx. Theory 134 (2005), 257-266. https://doi.org/10.1016/j.jat.2005.02.007
- K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
- S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938-945. https://doi.org/10.1137/S105262340139611X
- X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965. https://doi.org/10.1016/j.na.2006.08.021
-
X. Qin, Y. J. Cho, S. M. Kang and H. Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-
$\phi$ -nonexpansive mappings, Appl. Math. Lett. 22 (2009), 1051-1055. https://doi.org/10.1016/j.aml.2009.01.015 - X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), 20-30. https://doi.org/10.1016/j.cam.2008.06.011
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
- S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
- W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062