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ITERATIVE PROCESS WITH ERRORS
FOR m-ACCRETIVE OPERATORS

J. H. BAEK, Y. J. CHO AND S. S. CHANG

ABSTRACT. In this paper, we prove that the Mann and Ishikawa
iteration sequences with errors converge strongly tc the unique solu-
tion of the equation x4+ Tz = f, where T is an m-accretive operator
in uniformly smooth Banach spaces. Qur results extend and im-
prove those of Chidume, Ding, Zhu and others.

1. Introduction

Let X be a real Banach space, X* be the dual space of X and (-, )
be the generalized duality pairing between X and X*. The normalized
duality mapping J : X — 2% is defined by

J@)={fe X" (x,f) =z |fll ==}, zeX.

A real Banach space X is said to be uniformly smooth if its modulus
of smoothness px (7) defined by

px(7) = sup{é-(llw tyli+lle—ull) ~ 12,y € X llef = 1, [lyll = 7}

for 7 > 0 satisfies ‘3—";(12 — 0 as r — 0. It is known ([21], [31]) that
X is uniformly smooth (convex) if and only if X* is uniformly con-
vex (smooth). If X* is uniformly convex, then the normalized duality
mapping J is single-valued and uniformly contintous on any bounded
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subset of X. Let D(T) and R(T) denote the domain and range of an
operator T, respectively.

An operator 7' : D(T) ¢ X — X is said to be accretive if for all
x,y € D(T), there exists j(z — y) < J(z — y) such that

(Tt =Ty,jix—y)) > 0.

An accretive operator 7T is said to be m-accretive if R(T + A\[) = X
for all A > 0 (or, equivalently, for some A > 0), where I is the identity
operator.

The notion of accretive operators was introduced and studied inde-
pendently by Browder ([3]) and Kato ([20]). In 3], Browder proved
that if X is a Banach space and T is a locally Lipschitzian and accre-
tive operator with D(T) = X, then T is m-accretive, and so, for any
given f € X, the equation x + Tz = f has a solution. The result was
generalized by Martin ([24]) to the continuous accretive operators.

Recently, many authors proved that the Mann and Ishikawa itera-
tion sequences ([19], [23]) converge strongly to a solution of the equa-
tion x + Tz = f, where T is a Lipschitzian accretive operator on a
Hilbert space or Ly, space ([8], [9]) or T" is a continuous accretive oper-
ator on uniformly smooth Banach spaces ([10}, [15]) or T is a Lipschitz-
lan accretive operator on p-uniformly smooth Banach spaces ([16], [18],
[29]), which generalizes the corresponding results of Chidume ([8], [9])
or T’ is strongly accretive and strongly pseudo-contractive operators on
uniformly smooth Banach spaces or L, spaces ([7, [11]-[13]). In [34],
Zhu proved that the Mann iteration sequence ccnverges strongly to
the unique solution of the equation =+ Tz = f under slightly different
conditions, where T': D(T) ¢ X - X is a Lipschitzian m-accretive
operator and D(T') is an open subset of a uniforinly smooth Bnanch
space. Recently, Chidume and Osilike ([14]) extended the above re-
sults to the Ishikawa iteration sequence, where I is a Lipschitzian
m-accretive and D(T') is a closed subset of a real 3anach space which
is both uniformly convex and ¢-uniformly smooth. Further, Liu ([22])
and others([4, [5], [6], [10, [17], 33]) proved als> some convergence
theorems on the Ishikawa and Mann iterative processes with errors for
nonlinear strongly accretive mappings and monotcne type mapping in
Banach spaces. Very recently, Chang and Tan ([6 ) extended these in
uniformly smooth Banach spaces by using the new inequality which is
more convenient and simple than Reich’s inequality ([27]).
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On the other hand, a class of operators closelv related to the class
of accretive operators is the class of dissipative operators. An operator
T:D(T) C X — X is said to be dissipative ([1}) if —~7 is accretive.
The dissipative operator T is said to be m-dissipative if R(/ —AT) = X
for all A > 0. In [2], Browder proved that T is = locally Lipschitzian
dissipative operator on D(T) = X, then T is m-dissipative. Some
related results of the equation z - AT'r = f are given in [8)-[10], [14]
and [18], where A > 0 and T is a Lipschitzian dissipative operator on
Banach spaces.

In this paper, we prove that if X is a uniformly smooth Banach space
and T': D(T) € X — X is m-accretive with the closed domain D(T)
and the bounded range R(T'), then the Mann ard Ishikawa iteration
sequences with errors converge strongly to the unique solution of the
equation z + Tz = f. Our results extend, gereralize and improve
Chidume and Osilike ([14]), Ding ([17]), Zhu (34]) and the known
results mentioned above.

2. Preliminaries

In this section, we give some lemmas for our raain results. In [27],
Reich proved that if X* is a uniformly convex Banach space, then
there exists a continuous nondecreasing function b : [0,00) — [0,00)
and j(z) € J(x) such that b(0) = 0, b(ct) < cb(t) ‘or all ¢ > 1 and

(2.1) Iz + wll* < llz1? + 2(y, j(2)) + max{||2 |, 1}y llb(llwi)

for all z,y € X. Further, Nevanlinna and Reich ([25]) proved also that,
for any given continuous nondecreasing function b(t) with b(0) = 0,
there exists a sequence {A,}52 of real numbers such that

i)0< A, <lforalln=0,1,2, -,

(11) 3o An = 00,

(1i1) D007 o Anb(An) < 0.

For X = L,,, 1 < p < oo, we can choose any sequence {A )2, in
A\ with s = pif 1 <p<Zands=2ifp> 2

By using the results of Reich and Nevanlinna-Reich, Chidume ([8]-
[10], {13]), Ding ([17}), Zeng ([32], '33]), Weng ([30]) and many authors
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proved some convergence theorems of the Mann and Ishikawa iteration
sequences in Banach spaces.

Recently, Chang et al. ([5]-[7]) introduced an inequality which is
more simple and convenient than Reich’s inequality (2.1) as follows:

LEMMA 2.1. ([7]) Let X be a real Banach space and J : X — 2X°
be the normalized duality mapping. Then for any given x,y € X

Iz + yli? < llzl* + 2y, 5(z + y))
for all j(z +y) € J(z +y).

LEMMA 2.2. ([22]) Let {an}, {b.} and {c,} be three sequences of
nonnegative real numbers such that

an41 _<_ (1 - tw)an + bn + Cn,

where 0 < ¢, <1, > 7 jt, = 00, b, = o(t,) and 3o gen < 00. Then
limy,—s 00 an = 0.

In Lemma 2.2, if we put ¢, = 0 for all n = 0,1,2,-- -, then we have
the lemma proved by Weng ([30]).

LeEMMA 2.3. ([34]) Let X be a Banach space and T : D(T) C X —
X be an m-accretive operator. Then, for any given f € X, the equation
z + Tx = f has a unique solution in D(T).

3. Main Results

Now, we give our main results in this paper.

THEOREM 3.1. Let X be a uniformly smooth Banach space and
T : D(T) C X — X be an m-accretive operator with the closed domain
D(T) and the bounded range R(T). Let {un}, {vn} be sequences in X
and {c,}, {B.} be sequences in [0,1] such that

(1) 322 o un | < 00, [[onll — 0 a5 n — oo,

(i) B — 0 as n — oo,

(iil) 320 an = 00, ap — 0 as 2 — oo.

For any given f € X, define Sz = f — Tz for ail x € D(T'). If there
exists o € D(T) such that the sequences {xn}, {un} defined by

Tnil = 1 —an)ry, + anS n + Un,
(3.1) { = (e v

Yn — (1 - gn)xu —+ ﬁnsxn + Un
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for alln = 0,1,2,--- are contained in D(T), then the Ishikawa iteration
sequence {z,} with errors defined by (3.1) converges strongly to the
unique solution x* of the equation z + Tz = f.

Proof. Since T : D(T) € X -~ X is m-accretive, by Lemma 2.3,
the equation z + Tz = f has a unique solutior z* & D(T). Since
Sz* = f - Txz* = z*, the point z* is a fixed point of S. Note that
R(S) is also bounded. Further, for all z,y € D(T),

Sz =Sy, (= y)) = {f = Ta — (f ~ Ty), j(z - y))

(3.2) = ~(Tz =Ty, j(z - y))
<.
Since R(S) is bounded, let
(3.3) d=sup{|Sz —z*|| : c € D(T)} + ||z, — z*],
(3.4) M=d+" |l + 1.
ri==0
By induction, we can prove
(3.5) npr =2 <d+ > fluyll < M
=1

foralln =0,1,2,---. In fact, if » = 0, then, fron (3.3) and (3.4), it
follows that (3.5) is true. If n = 1 then we have

lz2 = 27| = (1 = ar)(zy ") + ar(Syr - z") + w1
< (I -a)lzy - 27| + eallSyr - =[] + lluy ]|
<d+|lwm| <M
and so (3.5) is also true. Assume that (3.5) is true for n = &k — 1. Then
we have
[Tk — 27| = [[(1 — ew)(zx - 27) + an(Syp — &™) + wy|
s (-a)llor - 2| + allSyk — =] + fJux]
ko1
<@ -a{d+ ) fugll} + and + [l

J=1

k
=d+ > |l < M.
j=1
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Therefore, (3.5) is true for all n = 0,1,2,---. By (3.1) and Lemma
2.1, we have

Tny1 — x*”Q = |(1 - an)(Tn —27) + an(Syn — ") + un“2
< (1= an)?|z, — z*|?
56 < (1= anPle, -]
+ 20, (Syn — -77*,.7(33n+1 —z" ~up))

+ 2(un, j(Tnt1 — 7))
Now, consider the third term of (3.6):
(3.7) 2(un, j(@ns1 — 7)) < 2unll|Zngr — 27 < 2fun || M.
Next, consider the second term of (3.6):

<Syn—l'*>.7.(-73n+1 - " — ?Ln)>
= (Syn — 2", j(T0 — T7))
+ <Syn - x*aj(l'n-H —z* — un) — J(In - 33*))

(3.8) . . .
< A{Syn —x*, j(xn — T))
+ {Syn — 2, j(Tn1 — " —un ! — j{zn — 27))|
- dn + €n,
where

dp = (Syn — 5", j(Tn — 27)),
en = [{Syn — 2", §(Tnt1 — &7 = un) = Jlen —27))-
From (3.2)-(3.4), it follows that

dn = (Syn — 2", j(n — 27))
= (Syn — 2", j(yn — 7))

— (Syn — 2",y — ") — Jlzn — 7))
< {Syn — 2%, 5(yn — 27) = j(an - 27))|
<NSyn — 2 3y — 27) — J(zn - 7))
<d-5(yn —27) - jlan — ")
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and, as n — oo,

[yn — 2" = (zn = 27)| = llyn — x|
= 18n (S — zn) + v
< BadllSzn — 2™ + [z — 271} + [Jvnll
<26, M+ |lu,] — 0.

Since X is uniformly smooth, the normalized Juality mapping 7 is
uniformly continuous on any bounded subset of X and so, as n — oo,

H](yn - 37*) = j(xn — 1‘*)“ — 0.
Now, we prove e, — 0 as n — o0o. In fact, we have

en = [(Syn = 2", j(@ny = " = un) = (20 — z7))
< “Syn - m*HHJ(l‘n‘ | " - un) - j(xn - 17*)”

< d“j(anrI -z — “n) - j(IE,,, - 9:*: ”
and, as n — oo,

|Tnt1 — 2" —Uup — (Tn — ) = |zne1 — zn - Un ||

Il

|| Syn — xall
an{||Syn — 27| + lon — 7|}
S 2a71,]\'1 - 0.

INA

Thus, by the uniform continuity of 7,
[J(znt1 — 2" —up) = j(@n —2%) | = 0
and so ¢,, — 0 as n — 0. From {3.6)-(3.8), it follows that

|Zne1 — 27|
(3.10) < (1 = an)?flzn — 2°11% + 200 (kn + €0) + 2||un || M

< (1= an)|an — N + 200 (kn + 1) + 2|lun||M,
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where k,, is defined by

kn=d- H](yn —z") = jzn — z")|
and so k, — 0 as n — oo. Taking ||z, — z*|? = an, a, = t,,
2a,(kn + €5) = by, and 2||u,||M = ¢,, the inequality (3.10) reduces to

Ay 1 < (1 - t-L)a’Tl + bn + Cn.

By the conditions (i)-(iii), it is easy to see that

[o <} O
Zt” =00, by = o(t,), ch < 00

=0 n=0

and so, by Lemma 2.2, lim, 00 ¢y, = lmy, o0 [|on — %2 = 0, iee.,
the sequence {z,} defined by (3.1) converges strongly to the unique
solution z* of the equation  + T = f. This completes the proof.

REMARK 1. Theorem 3.1 improves Theorem 3.1 in Ding [17] in
several ways, l.e., in our theorem, we need not the conditions of the
uniform convexity of X and limy,. ,oc anb(ay,) = (. In [17], also Ding
used Lemma 2.4 ([28]) to prove that the Ishikawa iteration sequence
defined by him newly converges strongly to the uinique solution of the
equation x + Tx = f. By using Lemma 2.1, our proof of Theorem 3.1
is more simple and easier than the proof in Theoremn 3.1 [17].

COROLLARY 3.2. Let X,T,D(I') be the same as in Theorem 3.1.
Let {u,} be a sequence in X and {a, } be a sequence in [0, 1] such that

(i) Z:,Q:‘O unl| < oo,
i) S°°° =00, @y, — 0asn — oo.
n=0

For any given f € X, define Sx = f — T for ail x € D(T). If there
exists zg € D(T') such that the sequence {z, } defined by

(3.11) Tnp1 = (1 — ap)r, + @ STy + vy
for all n = 0,1,2,--- is contained in D(T), then the Mann iteration

sequence {x, } with errors defined by (3.11) converges strongly to the
unique solution of the equation ¢ -+ Tz = f.
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Proof. Taking v, =0 and 3, =0 for all n = ,1,2,--- in Theorem
3.1, we have the conclusion. [

REMARK 2. Corollary 3.2 improves and gencralizes Chidume and
Osilike (14, Corollary 1, Theorewn 5], Zhu [34, Theorem 3!, Zeng [33,
Theorems 1 and 2] and many others.

THEOREM 3.3. Let X be a uniformly smooth Banach space and
T : X — X be a continuous accretive operator w.th the bounded range
R(T). Let {u,}, {vn} be sequences in X and {a,,}, {3,} be sequences
in [0, 1] satisfying the conditions (i)-(iii) in Theorem 3.1. For any given
f € X, define Sz = f — Tx for all xt € X. Then for any zo € X, the
Ishikawa iteration sequence {x,} with errors defined by (3.1) converges
strongly to the unique solution of the equation a + Tx = f.

Proof. By the result of Martir. [24], since T is continuous accretive,
T is m-accretive and so the equation x + Tz = f has a unique solution
z* € X. Therefore, the conclusicn follows as in the proof of Theorem
3.1 OJ

COROLLARY 3.4. Let X and'!" be the same as in Theorem 3.3. Let
{un} be a sequence in X and {a.,} be a sequence in [0,1] such that

(1) 12 lwal| < oo,

(ii) S0 g an = 00, @, — 0 asn — oo.

For any given f ¢ X, define Sz = f —Tx for all x ¢ X. Then
for any xo € X, the Mann iteration sequence {x, } with errors defined
by (3.11) converges strongly to the unique solution of the equation
z+Tzr=f.

Proof. Taking v,, =0 and 3, =0 for allmn =1,1,2,-- in Theorem
3.3, we have the conclusion. ]

REMARK 3. Theorem 3.3 and Corollary 3.4 itnprove and generalize
Theorem 4, Theorem 6 and Corollary 2 in Chidume and Osilike ([14])
and many others.

Next, we prove some converger:ce theorems for dissipative operators,
L.e., some theorems on the approximation of a tnique solution of the
equation x — Tx = f, where T : D(T") C X — X is an m-dissipative
operator.
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THEOREM 3.5. Let X be a uniformly smootl Banach space and
T :D(T) C X — X be an m-dissipative operator with the bounded
range R(T). Let {u,}, {v,} be sequences in X and {a,}, {B.} be
sequences in [0, 1] satisfying the condition (i)-(iii) :n Theorem 3.1. For
any given f € X, define Sx = f + Tz for all 2 € D(T). If there
exists xg € D(T') such that the sequences {z,}, {yn} defined by (3.1)
are contained in D(T), then the Ishikawa iteration sequence {z,} with
errors defined by (3.1) converges strongly to the unique solution of the
equation x — Tx = f.

Proof. Since T' is an m-dissipative operator with the bounded range
R(T), =T is an m-accretive operator with the bounded range R(—T)
and so the result follows from Theorem 3.1. O

COROLLARY 3.6. Let X and T be the same as ‘n Theorem 3.5. Let
{un} be a sequence in X and {a,} be a sequence in [0, 1] satisfying the
conditions (i) and (ii) in Corollarv 3.2. For any given f € X, define
Sz = f+ Tz for all x € D(T). If there exists z, € D(T) such that
the sequence {z,} defined by (3.i1) is contained in D(T'), then the
Mann iteration sequence {x,} with errors defined by (3.11) converges
strongly to the unique solution of the equation x -- Tx = f.

Proof. The conclusion follows from Theorem 3.5 with v,, = 0 and
ﬁn:OfOI'TL:O,l’Q,..._ -

Finally, we give also some convergence theorems of the Mann itera-
tion sequence for m-accretive and locally Lipschitz:an operators in real
Banach spaces.

THEOREM 3.7. Let X be a real Banach space, T : D(T) € X —
X be an m-accretive and locally Lipschitzian operator with the local
Lipschitz constant L > 1 of T. Suppose that D(T) is open and z*
is the unique solution of the equation x + T'x = f for all f € X and
x € D(T) and that {a,,} is a real sequence such that

(1) 0 S Ay, S jul,—[/)Qv

(i) D07 g an = oc.

If there exists a closed convex neighborhood E of x* contained in
D(T) and a point xg € B such that T is Lipschitzian on B and the
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sequence {x,} defined by
(312) Lyyg1 = (1 — Qp )Ly, + Qn(f —1 ;L'n)

for all n = 0,1,2,--- is contained in B, then th= sequence {x,} con-
verges strongly to the unique solution x* of the equation r +~ Tz = f
and we have the following error estimate:

n

lzn — 2*|| < exp(~3 };;aj)llwo .
=

Proof. Define S : D(T) ¢ X — X by Sz = f~Tx forall z €
D(T). It is obvious that z* is a fixed point of S, S is also a locally
Lipschitzian operator with the local Lipschitz constant L > 1 on B
and (—5) is accretive on D(T), i.e., for any x,y € D(T), there exists
jlx —y) € J(x —y) such that

(Sz — Sy, j(z —y)) <O0.
From (3.12) and Lemma 2.1, we have
et — 2
(313) =1 — an)(xn — ") - an(Sz, — z*)|?
<(1- an)Qllxn - x*”ll3 + 20‘n<5$n - ?f*aj(ITH—l - 17*)>

for all j(zn41—2") € J(Znt1—2). Since (—85) is accretive, there exists
J(@pir —z*) € J(Tpy1 — ™) such that
(3.14) (Stp1 — ", j(xniy — ™)) <O0.
Thus, from (3.13) and (3.14), it {ollows that
Jnir - 27
< (1= anPlln — 27|
+ 20, (Szy — STy — STpy1 — $*755$n+1 )
(3.15) < (1—apn)?||z, —z*|
+ 20, (Szy, — STy, HXnyr — 7))
< (1= an)’llen = 2|1 + 200 (|Szn = Seatill@nsn — 27

< (1= ) zn — 2| - 200 Lllzn — i lllzas - 27|l
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On the other hand, we have
1z — Znt1ll = anllzn — Sz, |
(3.16) < anfllzn — 2™ + |27 - Sz, |}
< an(l = L)|lzn —z*||
and, from (3.16),

|Znt1 ~ 2| = |Tny 1 — Zn + Tn — z"|
(3.17) <zat = @l + flzn - 27|
<A{an(l+ L)+ 1}z, -z
Substituting (3.16) and (3.17) into (3.15), we have, by the condition

(i),

[€ns1 — 2|}

<{(1- an)? + anL(Qai(] ~+ L')2 + 20, (1 + L) Hlzn — I*H2
(3.18) < {(1-an)?+ anLla, + 20, (1 + L)}z, — z*|*

={(1 - an) + anfan(1 + 3L + 2L?) — 1]}z, — z*||?

< (1= ap)fzn — I*H2

for n =0,1,2,---. By induction and (3.18), we can prove
T
(3.19) [ns1 — 27> < exp(— ) a;)]ao — 2"
§=0
for n =0,1,2,---. Hence, by the condition (ii), we have

|€pnt1 — 2| =0 as n — oo,

le, z, — " as n — oo. From (3.19), we obtain the error estimate
1 n
lon i1 = 2"l < exp(~5 D a)llzg — 2.
=0

This completes the proof. O

REMARK 4. Theorem 3.7 improves and extends Osilike [26, Theo-
rem 1], Chidume and Osilike [14], Zhu [34] and others.
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