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STEEPEST DESCENT METHOD FOR
LOCALLY ACCRETIVE MAPPINGS

C. E. CHIDUME

1. Introduction

Let E be a real normed linear space, K C E. A mapping A : ¥ — E
is called strongly pseudocontractive if there exists ¢ > 1 such that the
inequality

(1) e = yll <UL+ )z —y) — rt(Az - Ay)|

holds for all z,y € K and r > 0. If t = 1 then A is called pseudo-
contractive. The map A is called locally strongly pseudocontractive if
each point of K has a neighbourhood N for which (1) holds for each
Z,y € N and some t > 1. Pseudocontractive operators have been stud-
led by various authors (see e.g., [1], 2], [4], [8-12], [14], (16], [17], [18],
[19], [21], [22], [28], [29], [30], [32-33], [37]). Interest in such mappings
stems mainly from the fact that they are firmly connected with the
unportant class of nonlinear accretive operators. A mapping U with
domain D(U) and range R(U) in E is called accretive (see e.g., [2],
[15]) if the inequality

le =yl <lle -y + Uz - Uy}

holds for each z,y € D(U) and all ¢ > 0. me-dskip The accretive
operators were introduced independently by Browcer [3] and Kato (15].
If E = H, a Hilbert space, one of the earliest problems in the theory of
accretive operators was to solve the equation z + Uz = f for z, given
an element f of H and an accretive operator U. We remark here that
in Hilbert spaces, accretive operators are also called monotone. In (3],
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Browder proved that if U is locally Lipschitzian and accretive then U is
m-accretive, that is, (I + U) is surjective. This result was subsequently
generalized by Martin [20] to the continuous accretive operators.

The firm connection between the pseudocontractive mappings and
the accretive operators is that a mapping U is pseudocontractive if
and only if (I — U) is accretive [3, Proposition 1] Consequently, the
mapping theory for accretive operators is closely related to the fixed
point theory of pseudocontractive operators.

It 1s well known (see for example, [4]) that mary physically signifi-
cant problems can be modelled in terms of an init:al value problem of
the form

(2) { W= o

where U is either accretive or strongly accretive. 'Typical examples of
how such evolution equations arise are found in mo-lels involving either
the heat, the wave or the Schrodinger equation. Let N(U) denote the
kernel of U. We observe that members of N(U) are, in fact, the equi-
librium points of the system (2). Consequently, considerable effort has
been devoted to developing constructive techniques for the determina-
tion of the kernels of accretive operators (see e.g., [5], [6], [7], [8-12],
(13], [14], [22], [23-25], [27], [28], [29], [30], [32, 33], [35], [36], [3T]).
Moreover, since a continuous accretive operator can be approximated
well by a sequence of strongly accretive ones, particular attention has
been devoted to constructive techniques for the kernels of strongly ac-
cretive operators. In this connection, but in Hilbert space, Vainberg
[35] and Zarantonello [39] introduced the steepest descent method:
(3) Tpg1 = Tp — Uz, o€ H, n=012,...

and proved that if U = I+ T where T is a monotone Lipschitz map and
cp = A,n =0,1,2,...;\ a constant, then the sequence {z,} defined
by (3) converges strongly to an element of N(U). This result has been
generalized and extended to more general Banach spaces (see e.g., [5],
(8-12], [2], [23-26], [28], [29], [32]. [33], [37]). Recently, the author
proved the following theorem:
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THEOREM 1 ([8]). Suppose K is a nonempty rlosed bounded and
convex subset of Ly,,p > 2, and T : K — K is a Lipschitz strongly
pseudocontractive mapping of K into itself. Let {c, } be a real sequence
satisfying:

(i) 0<c¢p<lforalln>1,
(i) Y00 cn = 00; and
(i) S ¢ < oo,

Then the sequence {z,}o>, generated by 1 € K,
(4) Tpgl = Ty — € Az,, n2>1

converges strongly to a solution of the equation Az = 0 where A =

I-T.

Several authors have generalized and extended Theorem 1 in various
directions. In [32], Schu extended the theorem to the class of continu-
ous strongly pseudocontractive maps in real Banach spaces with prop-
erty (U,a,m+1,m) (see e.g., [32] for definition). These Banach spaces
include the L, spaces, p > 2; and in [33] he extended the theorem
to the class of uniformly continuous maps in smonth Banach spaces.
Bethke [1] obtained a slight generalization of the theorem still in L,
spaces, p > 2; the author [10] and also Osilike [22] extended the the-
orem to the class of continuous strongly pseudocontractive maps on
real uniformnly smooth Banach spaces. Other gencralizations can be
found in Xu, Zhang and Roach [30]. The most general result for the
global convergence of (4) for strongly accretive maps seems to be the
main result of Xu and Roach [28] (see also a result of the author, [12]).
A natural problem of interest (see e.g., [14], [37]) is to prove conver-
gence theorems for approximating solutions of Az = 0 when A is locally
accretive and a solution is known to exist.

It is our purpose in this paper to prove that in real g-uniformly
smooth Banach spaces (defined below) the steepest descent approxima-
tion method (4) converges strongly to a solution of the equation Az = 0
(when one exists) for locally strongly accretive operators, A. In partic-
ular, our result (Theorem 2) will extend Theorem 1 to real ¢ uniformly
smooth Banach spaces (which include the L, spaces, 1 < p < o0)
and to the class of locally strongly pseudocontract ve maps (see our
Remarks 1 and 2). Furthermore, since Banach spaces with property
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(U,a,m + 1,m) are g-uniformly smooth, Theorem 2 also extends the
result of Schu (Theorem 1 of [32]; to these more general Banach spaces
and to operators which are continuous and locally strongly pseudocon-
tractive, while Theorem 4 extends Theorem 2 of [32] to the class of
locally Lipschitz continuous and strongly pseudocontractive maps. In
addition, we shall prove a theorem (Theorem 3) on the convergence of
the iteration process (4) to a solution of the equation z+ Uz = f where
U7 1s a continuous locally accretive map on a real g-uniformly smooth
Banach space. This result is related to the results of Bruck [5], the
author [9] and Carbone [6].

2. Preliminaries

Let E be a Banach space. We shall denote by J the normalised
duality mapping from E to 2% given by

Je=A{f e B« |f*II" = lzl* = =, f*)}
where (,) denotes the generalized duality pairing. If E is uniformly
convex then J is single-valued, and is uniformly continuous on bounded
sets. In the sequel we shall denote single-valued normalized duality
map by j.

Now, with p > 1, follwoing [38], we shall asscciate the generalized
duality map J, from E to E* defined by

Jple)={f" € E* : {a,f*) = ||lzlI", and | f*)] =|z||”"'}.

In pmti( ular, J; 1s the usual normalized duality map on E. It 1s known

(see c.g., [38]) that
(5) Jp(x) = {lz)|P7 J{z) for z # 0.

Let E be a Banach space with dim E > 2. The modulus of smooth-
ness p.(7),7 > 0, of E is defined by

pelm) =sup{(llz +yll+ lz —pyl)2-1: 2,y € E, o] = Lyl = 7}.
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The Banach space E is uniformly smooth (see e.g., (34]) if
im0 p,(7)/7 =0, and E is called g-uniformly smooth (see e.g., [38])
if there exists a cosntant ¢ > 0 such that

pe(T) <cr?, 0<7 < oxi.
It is known (see e.g., [38], [34]) that

I { p — uniformly smooth if 1 < p <2
18 i .
d . 2 — uniformly smooth if p > 2.

A Banach space E is called smooth (see e.g., (31], p.60) if, for every
z € E with ||z| = 1, there exists a unique f* € E* such that ||f*|| =
fr(z) = 1. In [38], the following result which will be needed in the
sequel is proved.

LeEMMA 1 ([38]). Let ¢ > 1 be a real numbe: and E be a smooth
Banach space. Then the follwoing are equivalent

(1) E is ¢-uniformly smooth;
(11) There is a constant ¢ > () such that for every x,y € E, the
following inequality holds;

(6) le +yll* <2l + gy, Jo(2)) + clyl|?

A mapping U is called locally strongly accretive if each point in the
domain of U has a neighbourhood N for which there exist a constant
k>0 and j(z —y) € J(z — y) such that

(7) Uz~ Uy, jx - ) > Kz -yl
holds for x,y € N.

The following lemma has been proved:

LEMMA 2 ([37]). Let E be a real Banach space, k' a subset of E
and U : K — E. Then U is locally strongly pseudocontractive if and
only if (I — U) is a locally strongly accretive.
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3. Main results

In the sequel, ¢ will denote the constant appearing in inequality (6).
We prove the following theorems.

THEOREM 2. Let E be a real g-uniformly smooth Banach space.
Suppose T is a continuous locally strongly accretive map with open
domain D(T) in E and that Tx = 0 has a solutior. +* in D(T). Then
there exist a neighbourbood B in D(T) of +* and a real number vy >0
such that for any r > ry and some real sequence {c,,}, any initial guess
x| € B, the sequence {x,} generated from xy by

(8) Tyl = Tp — Cn I a,, n =1,
remains in D(T) and converges strongly to x* with

Iz — 2| = O(n~9~ /2y,

Proof. Since T is locally strongly accretive, there exists a neighbour-
hood U of z* such that for each z « U,

(T - Tx*, jlx— %)) > k| - 2*||%.

Accretiveness of T on U implies T is locally bounded at each interior
point of U (see e.g., Rockafellar [31], Reich [26]). So, we can choose
B = By(x*), the closed ball of radius d > 0,B € U7 so that T(B) is
bounded and T is strongly accretive on B. Let D be a constant such
that 2d+ diam(T(B)) < D. Let ry = [c!/9D]e/la~1 (dk)~9/¢9=1 Then

ry > 0 and for r > ry,

(9) D < ple-Uiagy e

N — 1 _._ LS -
Let en = gy dn = FmmoneT7e

Observe that (1 — k ¢,)%d% +c? = d? . ,
Starting with an initial guess r; € B, define the sequence {zn}s%,
inductively by (8).

Claim For all n > 1, z,, 1s well defined and

||J." - 'T*H S dvln d T(q_l)/qk.
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The proof of this claim is by induction. For n = 1,z, is clearly in B.
Suppose now that the claim has been proved for a particular choice of

n. Then,
lon — 2| < dy d rl@-V/k —d so z, € B.

Thus, x, 1s well defined by (8). Using (5), (6), (7) and the induction
hypothesis, we obtain:

(10) |l2nsr — 2™ = |[(1 = en)(xn — z") + en(Szn — S2™)|}9,

where Sz := z — Tz for each z ¢ B. Observe that z* is a solution of

Tz = 0 and only if it is a fixed point of §. Moreover,

(Sxyn — Sa*, Jy(zn — 2")) = (zp, — 2 = (Tz, — TT), Jo(zp — 2%))
=|zn —a*|? = (Tan — Ta*, Jy(zn — %))

<(1 = k)|len — |
Hence, from (10), using (6):
(11)

"x"+1 - I*Hq <(1- (:n)q”xn -~z

+ ¢ cn(l = cu)? (Say, — Sz*. Jy(2n — 2*)) + ¢ 4 ||Sz, — Sa*||?

+c || Sz, — Sz™||9,
For z € {0,1), consider the function

flz)=(1+2), ¢>1
Then, there exists £ € (0,2) such that

1] ,L.'Z
f) = 100+ 27 + L8 =14 g+ T ), (i)

Observe that f"(£) > 0. Set @ = {1 — k)ca(l —c,) 7! in (i) to get,

(1-k)en]? . q(l=k)en (1 k)22 f(€)
{1 + ————] =1+ 1<) (1 -cn)? 2

1—e¢,
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which simplifies to
(1 —cn+(1—k)en)?

= (1 - Cn)q + q(l - ]\7)(11(1 - Cn)qul + (1 - k)ZCfl(l - Cn)qﬂz.f“(S)

N =

and implies (since f”(€) > 0):
(1 =) +q(1 = k)ep(1 —en)? < [1—cn+ (1= k)en)? = (1 — key)?
Hence, using this inequality, (11) yields:
lrass = 219 < (1~ keq)¥lla — 27| + ¢ c&] Sy — S|
Observe that ||Sw, — Sz*|| < D so that
leass — ¥ < (1= kea) iz — 277 4 ¢ 4 DI
which implies, by induction hypothesis
lengs — 27| < (1 = ken)¥d? + c2]d? vt k9 =l r?7! kT d7

so that
[2ps — ¥ < dpgy dk 9709

completing the induction process. Since d, = O(n~(471/4) the error
estimate of the theorem has also been established. This completes the
proof.

COROLLARY 1. Let E be a real ¢g-uniformly smooth Banach space.
Suppose U is a continuous locally strongly pseudocontractive map with
open domain D(U) in E and that U has a fixed point in D(U). Then
there exist a neighbourhood B in D(U) of ¢* and a real number ry > 0
such that for any r > r, and some real sequence {c.}, any initial guess
Ty € B, the sequence {x,} generated from x| by

Tpg1 = Tpn — (L U)zy n>l,

remains in D(U) and converges strongly to x* wit

Hmn - 33*” = (.)(71’_((1—1)/4).

Proof. Follows immediately fromn Lemma 2 and Theorem 1.
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REMARK 1. In [14], the author claimed to have generalized Theo-
rem 1 to locally Lipschitzian and strongly pseudccontractive operators
in L, spaces, p > 2. He stated that if the mapping U : D(U) —
E(E = L,,p > 2) is locally Lipschitzian and strongly pseudocontrac-
tive, then there exists a closed region B(z*) containing a solution z*
of the equation Tx = y such that, for dI‘bltrdly zg € B{z*), the pro-
€ess Ipq1 = &p + Ay — Ta,) for a suitable A converges strongly to
the solution r*. However, as has already rightly been observed (MR.
92h:47090) the author fails to prove the existence of the region B(z*)
where the iteration process is well defined. Moreover, there are several
other inconsistencies in this result (see e.g., MR. 92h:47090).

REMARK 2. In [37], the author claimed to have extended Theorem
1 to general uniformly smooth Banach spaces £ and to the class of
local strongly pseudocontractive operators. He published the following
theoremn:

TueorReEM XW ([37]). Let I be a subset o a uniformly smooth
Banach space E and U : K — E be a local pseudcocontractive mapping.
IFFU)={re X : Ur =z} +# 0 and the range of U is bounded,
then {r,} € K generated by r; = K,

T4l = In en(d — C‘I)Tn

with {c,} C (0,1], satsifying: 2:::1 Cn = x,¢, — 0, converges
strongly to z* € F(U) and F(U) is a singleton set.

We remark immediately that the sequence {z,,} in Theorem XW is
not even well defined, as can be seen from the following easy example.

COUNTER-EXAMPLE TO THEOREM XW. Taike E = ¢, K = {z €
ly ||zl €1}, DefinelU : K — E by

(v/v(.lfl,;l‘-z.’l';;,‘ . ) = '—41?1,—4:1,‘2,—4.’133, . )

for arbitrary (r1,z4,x3,...) € K Then,

(1) E is clearly uniformly smooth;

( 1) Uz =« if and only if x == 0. Hence F(U) # 8.

(1) |Uz|| <4 for each z € K. Hence, the range of U is bounded
)

(I -1z~ (I-U)y,j(z~y)) = 5|z ~uvl|? for each z,y € K.

(iv
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Now, choose ¢, = ;1—_—15,71 =1,2,-- and z; = (1,0,0,...) € K. Then
Ty = (—%,0,0,...) ¢ K, and so z3 is not defined. In fact, the above
choice of z, is not crucial. For example, for anv A € (%,1),1‘1 =
(X,0,0,...) € K and 7, = (-£X,0,0,...) ¢ K. Again 3 is not
defined. Other choices are obviously possible. This completes the
counter-example.

We now prove the follwoing theorem on the convergence of the steep-
est descent method to a solution of the equation z+ Tz = f for a locally
accretive operator T in ¢g-uniformly smooth Banach spaces.

THEOREM 3. Let E be a real ¢-uniformly smcoth Banach space.
Suppose T is a continuous locally accretive map with open domain
D(T) in E and that f € R(I + T). Suppose the equation x + Tx = f
has a solution * € D(T). Then there exist a neighbourhood B € D(T)
of z* and a real number 7y > O such that for any r > ry, any initial
guess 1 € B, the sequence {z,,}32 | generated frorn xy by

(12) Tnil = &y — (I = [+ Ty, n=12...,

for some real sequence {c, }22, remains in D(T') anc converges strongly
to x* with
flon — ™| = ("')(7'1/“('7_1)/‘1).

Proof. Let z* denote a solution of the equationn # + Tx = f. So,
as in the proof of Theorem 2, we can choose B = By(t*), the closed
unit ball of radius d > 0, B C D(T') so that T(B) is bounded and T is
accretive on B. Let
q/(g—1

)
r1 = |CY%iam T(B) d=9/ 1)

Then r > 0 and diam T(B) < rla-D/ag ¢~ for r > ry. Let ¢, =
n—_l’_';,dn = GI;:—I%G_—]W so that (1 — (fn)qd?l + C‘TII = dgl—l-l‘ Starting

with an initial guess z; € B, define the sequence {z}52; inductively

by (12). As in the proof of Theorem 2. {z,} is well defined by (12).
We now prove

lrn — 2*|| < dpd ¥4/,
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Now, using an induction argument as in the proof of Theorem 2, we
have,

[Zntr =21 (1 = en)llzn — 2|17 — g en(1 - ca)?™

(Tay — Tx*, Jy(2y — 2%)) + ¢ || Tz™ — Tz,||?.
Since ¢,(1 — ¢,) 2 0 and T is accretive, it follows that
lrmgs = 2l < (1= ca) ¥l — 2|17 + € | Ta” — Tara 7.

Using the induction hypothesis and the fact that T'z,, and Tx* belong
to T(B), the last inequality yields:

2n41 — 2|7 < [(1 — cp)?df + cl]d? r=1 . di+1 9 ra=v
so that ||zpy1 — 2*| < dpgid #8079 completing the induction argu-

ment and completing the proof of the theorem.

COROLLARY 2. Let E be a real g-uniformly sinooth Banach space.
Suppose U is continuous locally pseudocontractive map with open do-
main D(U) in E and that U has a fixed point z* in D(U). Then there
exist a neighbourhood B in D(U) of z* and a real number r; > 0 such
that for any r > vy and for some real sequence {c,}52,, any initial
guess xy € B, the sequence {x,}:% , generated from z, by

Tnp1 = Tn — cp(d = Uz, n > 1,
remains in D(U) and converges strongly to z* with
2w = 27| = O(n~(a-D/1),

Proof. Obvious, from Lemma 2 and Theorem 3.
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