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CONVERGENCE OF ISHIKAWA ITERATION WITH ERROR

TERMS ON AN ARBITRARY INTERVAL

Qing Yuan, Sun Young Cho, and Xiaolong Qin

Abstract. In this paper, a continuous real function on the real line is
considered. The necessary and sufficient conditions for the convergence
of the Ishikawa iteration with error terms for the functional are obtained.

1. Introduction and preliminaries

Iterative methods are popular tools to approximate fixed points of nonlinear
mappings. Recall that the normal Mann’s iteration was introduced by Mann [4]
in 1953. Recently, construction of fixed points for nonlinear mappings via the
normal Mann’s iteration has been extensively investigated by many authors.
Throughout this paper, we always assume that R denotes the real line. The
normal Mann’s iteration generates a sequence {xn} in the following manner:

(1.1) x1 ∈ R, xn+1 = (1− αn)xn + αnf(xn), ∀n ≥ 1,

where x1 is an initial value, f is a real function and {αn} is a sequence in [0, 1].
Next, we recall another popular iteration: Ishikawa iteration. Ishikawa it-

eration was introduced by Ishikawa [3] in 1974. Ishikawa iteration generates a
sequence {xn} in the following manner:

(1.2)


x1 ∈ R,
yn = (1− βn)xn + βnf(xn),

xn+1 = (1− αn)xn + αnf(yn), ∀n ≥ 1,

where x1 is an initial value, f is a real function and {αn} and {βn} are real
sequences in [0, 1].

In 1953, Mann proved that, if f is a continuous real function on a unit
interval of a real line with a unique fixed point, then Mann iteration converges
to the unique fixed point. In 1971, Franks and Marzed [2] removed the condition
that f enjoys a unique fixed point. Subsequently, Rhoades [6] extended the
result to Ishikawa Iteration, see also Borwein and Borwein [1]. To be more
precise, he obtained the following result.
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Theorem R. Let f : [a, b] → [a, b] be a continuous real function. Let {xn} be
a sequence generated by the following manner:

x1 ∈ [a, b], xn+1 = (1− tn)xn + tnf(xn) ∀n ≥ 1,

where tn is a sequence in [0, 1] satisfying
∑∞

n=1 tn = ∞ and limn→∞ tn = 0.
Then the sequence {xn} converges to a fixed point of f .

Recently, Qing and Qihou [5] further considered the problem and obtained a
more general result on an arbitrary intervals. To be more precise, they obtained
the following results.

Theorem QQ. Let E be a closed interval on the real line (can be unbounded)
and f : E → E a continuous function on E. Let {αn} and {βn} be sequences
in [0, 1] such that limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ βn = 0. Let

{xn} be a sequence generated by the following manner:
x1 ∈ E,

yn = (1− βn)xn + βnf(xn),

xn+1 = (1− αn)xn + αnf(yn), ∀n ≥ 1,

If {xn} is bounded, then {xn} converges to a fixed point of f .

In this paper, motivated by the above results, we continue to study the
convergence problem of real functions. To be more precise, we shall consider
the case that the real function f defined on the real line R by Ishikawa iteration
with errors, which is efficient from the view of numerical computation.

In order to our main results, we still need the following lemma.

Lemma 1.1. Let f be a continuous real function defined on R. Let {xn} be a
sequence generated by the following manner:

x1 ∈ R,
yn = (1− βn)xn + βnf(xn) + vn,

xn+1 = (1− αn)xn + αnf(yn) + un, ∀n ≥ 1,

where {αn} and {βn} are sequences in [0, 1] satisfying the following restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and limn→∞ βn = 0;
(b)

∑∞
n=1 |un| < ∞ and limn→∞ |vn| = 0.

If the sequence {xn} converges to some point p, then p is a fixed point of the
real function f .

Proof. Suppose f(p) ̸= p. Since xn → p and f is continuous, we see that f(xn)
is bounded. Note that

|yn − p| ≤ (1− βn)|xn − p|+ βn|f(xn)− p|+ |vn|.
From the conditions (a) and (b), we obtain that yn → p as n → ∞. Putting
rn = f(yn)− xn + un for each n ≥ 1, we see that

lim
n→∞

rn = lim
n→∞

(f(yn)− xn + un) = f(p)− p+ 0 ̸= 0.
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Note that xn+1 − xn = αn (f(yn)− xn + un) + (1− αn)un. It follows that

xn =

n−1∑
k=1

{αk (f(yk)− xk + uk) + (1− αk)uk}+ x1 ≤
n−1∑
k=1

αkrk +

n−1∑
k=1

uk + x1.

From the condition (a), we assert that the sequence {xn} is diverge. This
derives a contradiction with xn → p. We, therefore, obtain that f(p) = p. This
completes the proof. □

2. Main results

Now, we are in a position to prove our main results.

Theorem 2.1. Let f be a continuous real function on R. Let {xn} be a se-
quence generated by the following manner:

(II)


x1 ∈ R,
yn = (1− βn)xn + βnf(xn) + vn,

xn+1 = (1− αn)xn + αnf(yn) + un, ∀n ≥ 1,

where {αn}, {βn}, {un} and {vn} are real sequences satisfy the following re-
strictions.

(a) 0 ≤ αn, βn ≤ 1 for each n ≥ 1;
(b) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ βn = 0;

(c) limn→∞
|un|
αn

= 0 and limn→∞
|vn|
βn

= 0;

(d)
∑∞

n=1 |un| < ∞ and
∑∞

n=1 |vn| < ∞.

If {xn} is bounded, then {xn} converges to a fixed point of f .

Proof. Suppose that the sequence {xn} is not convergent. Let a=lim infn→∞ xn

and b = lim supn→∞ xn, respectively. It is obvious that a < b. Let m be a
positive constant. If a < m < b, then we see that f(m) = m. Indeed, we have
the following. Suppose that f(m) ̸= m. we may, without loss of generality,
suppose that f(m)−m = σ > 0. Since f is a continuous function, we see that
there exists δ, where 0 < δ < b− a such that

(2.1) f(x)− x >
σ

2
, where |x−m| < δ.

Since {xn} is bounded and the real function f is continuous, we see that the
sequence {f(xn)} is bounded. In view of the iteration (II), we see that the se-
quence {yn} is bounded, so is {f(yn)}. Note that xn+1−xn = αn (f(yn)− xn)+
un. It follows from the conditions (b) and (d) that

(2.2) lim
n→∞

(xn+1 − xn) = 0.

On the other hand, we have yn − xn = βn (f(xn)− xn) + vn. It follows from
the conditions (b) and (d) that

(2.3) lim
n→∞

(yn − xn) = 0.
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In view of (2.2), (2.3) and the condition (c), we see that there exists N such
that

(2.4) |xn+1 − xn| <
δ

2
, |yn − xn| <

δ

2
, |un| <

σ

2
αn and |vn| <

σ

2
βn

for all n > N. From the assumption that m < b = lim supn→∞ xn, we see that
there exists a constant k, where k > N such that xk > m. For the fixed k, we
have the following two cases.

Case (1). xk > m+ δ
2 .

From (2.4), we see hat xk+1 > xk − δ
2 > m. That is, xk+1 > m.

Case (2). m < xk < m+ δ
2 .

In view of (2.4), we see that xk − δ
2 < yk < xk + δ

2 . This implies that

m − δ
2 < yk < m + δ. It follows that |yk − m| < δ and |xk − m| < δ

2 < δ.
Thanks to (2.1), we see that

(2.5) f(xk)− xk >
σ

2
and f(yk)− yk >

σ

2
.

Note that

xk+1 = (1− αk)xk + αkf(yk) + uk = xk + αk (f(yk)− yk) + αk(yk − xk) + uk

and yk − xk = βk (f(xk)− xk) + vk. It follows that

xk+1 = xk + αk (f(yk)− yk) + αk (βk (f(xk)− xk) + vk) + uk

> xk +
σ

2
αk + αk(

σ

2
βk + vk) + uk > xk.

Both Case (1) and Case (2) imply that xk+1 > m. In a similar way, we can
obtain that xn > m for all n > k. Note that lim infn→∞ xn = a < m, which
derives a contradiction. This proves that f(m) = m.

On the other hand, from the condition (d) and (2.3), we see that there exists
N∗ such that

(2.6) |un| <
b− a

10
, |vn| <

b− a

10
and |yn − xn| <

b− a

5

for all n > N∗. For all n > N∗, we have the following two cases.
Case (a). There at least exists an M > N∗ such that

(2.7) a <
3a+ 2b

5
< xM <

2a+ 3b

5
< b.

Case (b). For all n > N∗,

xn ≤ 3a+ 2b

5
or xn ≤ 3a+ 2b

5
.

Next, we prove both Case (a) and Case (b) lead to contradictions.
Suppose that Case (a) holds. From (2.7), we see that f(xM ) = xM . On the

other hand, we have

(2.8)
4a+ b

5
< xn <

a+ 4b

5
, n ≥ M + 1.
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Indeed, we have the following observation. From (2.6) and (2.7), we obtain
that

a <
4a+ b

5
< yM <

a+ 4b

5
< b.

It follows that f(yM ) = yM . Note that

xM+1 = xM + αM (f(yM )− yM ) + αM (βM (f(xM )− xM ) + vM ) + uM

= xM + αM (f(yM )− yM ) + αMβM (f(xM )− xM ) + αMvM + uM

= xM + αMvM + uM .

It follows from (2.6) that |xM+1 − xM | = |uM + αMvM | < b−a
5 . In view of

(2.7), we arrive at 4a+b
5 < xM+1 < a+4b

5 , which is the start of our mathematical
induction.

Suppose that 4a+b
5 < xm < a+4b

5 for some m. It follows from (2.6) that
a < ym < b. This implies that f(xm) = xm and f(ym) = ym. It follows that

xm+1 = xm + αm(f(ym)− ym) + um + αm(βm(f(xm)− xm) + vm)

= xm + um + αmvm,

which yields that |xm+1 − xM | = |um| + |vm| < b−a
5 . This is, 4a+b

5 < xm+1 <
a+4b
5 . This shows that (2.8) holds. It follows that a < lim infn→∞ xn = a,

which is a contradiction. That is, Case (a) leads to a contradiction.
Suppose that Case (b) holds. But from (2.2), we see that there exits N such

that

xn ≤ 3a+ 2b

5
∀n ≥ N, or xn ≥ 2a+ 3b

5
, ∀n ≥ N.

If xn ≤ 3a+2b
5 for each n ≥ N , then we see that b = lim supn→∞ xn ≤

3a+2b
5 < b, which is a contradiction.

If xn ≥ 2a+3b
5 for each n ≥ N , then we see that a = lim infn→∞ xn ≥ 2a+3b

5 >
a, which is a contradiction. That is, Case (b) also leads to a contradiction.

Combining Case (a) with Case (b), we see that the assumption that the
sequence {xn} is not convergent is not true. It follows that the sequence {xn}
convergence to some point, say p. In view of Lemma 1.1, we can conclude the
desired conclusion easily. This completes the proof. □

Theorem 2.2. Let f be a continuous real function on R. Let {xn} be a se-
quence generated by the iterative algorithm (II), where {αn}, {βn}, {un} and
{vn} are real sequences satisfy the following restrictions.

(1) 0 ≤ αn, βn ≤ 1 for each n ≥ 1;
(2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ βn = 0;

(3) limn→∞
|un|
αn

= 0 and limn→∞
|vn|
βn

= 0;

(4)
∑∞

n=1 |un| < ∞ and
∑∞

n=1 |vn| < ∞.

Then {xn} converges to a fixed point of f if and only if the sequence {xn} is
bounded.
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Proof. If the sequence {xn} converges to a fixed point of f , then we can see
that the sequence {xn} is bounded easily. If the sequence {xn} is bounded,
then we can obtain that the sequence {xn} converges to a fixed point of f easily
from Theorem 2.1. This completes the proof. □

Remark 2.3. Let f : E → E, where E stands for (−∞, a] , [a, b] and [b,+∞),
respectively, be a continuous real function. Define a function f : R → R as
follows:

If E = (−∞, a], then

f(x) :=

{
f(x), x ≤ a,

f(a), x > a.

If E = [a, b], then

f(x) :=


f(a), x < a,

f(x), a ≤ x ≤ b,

f(b), x > b.

If E = [b,+∞), then

f(x) :=

{
f(b), x ≤ b,

f(x), x ≥ b.

It is clear that f is continuous, the range of f is E and f(x) = f(x) for all
x ∈ E. Let {xn} be a sequence generated by the following manner:

(2.9)


x1 ∈ R,
yn = (1− βn)xn + βnf(xn) + vn,

xn+1 = (1− αn)xn + αnf(yn) + un, ∀n ≥ 1,

where {αn}, {βn}, {un} and {vn} are real sequences satisfy the following re-
strictions.

(1) 0 ≤ αn, βn ≤ 1 for each n ≥ 1;
(2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ βn = 0;

(3) limn→∞
|un|
αn

= 0 and limn→∞
|vn|
βn

= 0;

(4)
∑∞

n=1 |un| < ∞ and
∑∞

n=1 |vn| < ∞.

According to Theorem 2.1, we see that {xn} converges to a fixed point of

f(x) under the assumption that the sequence {xn} is bounded. Suppose that

f(x0) = x0, from which it follows that x0 ∈ E. Since the range of f(x) is E,

we obtain that f(x0) = f(x0) = x0, that is, {xn} converges to a fixed point x0

of f(x).

Remark 2.4. Let f : E → E, where E stands for (−∞, a] , [a, b] and [b,+∞),
respectively, be a continuous real function. Define a function f : R → R as in
Remark 2.3. Let {xn} be a sequence generated by (2.9), where {αn}, {βn},
{un} and {vn} are real sequences satisfy the following restrictions.
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(1) 0 ≤ αn, βn ≤ 1 for each n ≥ 1;
(2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ βn = 0;

(3) limn→∞
|un|
αn

= 0 and limn→∞
|vn|
βn

= 0;

(4)
∑∞

n=1 |un| < ∞ and
∑∞

n=1 |vn| < ∞.

According to Theorem 2.2, we see that the sequence {xn} converges to a
fixed point of f if and only if the sequence {xn} is bounded.
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