DOI QR코드

DOI QR Code

ALMOST STABILITY OF THE MANN ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN SMOOTH BANACH SPACES

  • Liu, Z. (Department of Mathematics Liaoning Normal University) ;
  • Kang, S.M. (Department of Mathematics Gyeongsang National University) ;
  • Shim, S.H. (Department of Mathematics Gyeongsang National University)
  • Published : 2003.01.01

Abstract

Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach space X and T : KlongrightarrowK be a strictly hemi-contractive operator. Under some conditions we obtain that the Mann iteration method with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. The results presented in this paper generalize the corresponding results in [l]-[7], [20] and others.

Keywords

References

  1. Nonlinear Anal. TMA v.30 no.7 Some problems and results in the study of nonlinear analysis S. S. Chang https://doi.org/10.1016/S0362-546X(97)00388-X
  2. J. Math. Anal. Appl. v.224 Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces S. S. Chang;Y. J. Cho;B. S. Lee;S. M. Kang https://doi.org/10.1006/jmaa.1998.5993
  3. Proc. Amer. Math. Soc. v.99 no.2 Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings C. E. Chidume https://doi.org/10.2307/2046626
  4. Proc. Amer. Math. Soc. v.120 Approximation of fixed points of strongly pseudo-contractive mappings C. E. Chidume https://doi.org/10.2307/2159893
  5. J. Math. Anal. Appl. v.192 Iterative solutions of nonlinear equations with strongly accretive operators C. E. Chidume https://doi.org/10.1006/jmaa.1995.1185
  6. Numer. Funct. Anal. Optimiz. v.15 Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces C. E. Chidume;M. O. Osilike https://doi.org/10.1080/01630569408816593
  7. J. Math. Anal. Appl. v.192 Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings C. E. Chidume;M. O. Osilike https://doi.org/10.1006/jmaa.1995.1200
  8. Ph. D. Thesis, University of Missouri-Rolla Fixed point theory and stability results for fixed point iteration procedures A. M. Harder
  9. Math. Japon. v.33 A stable iteration procedure for nonexpansive mappings A. M. Harder;T. L. Hicks
  10. Math. Japon. v.33 Stability results for fixed point iteration procedures A. M. Harder;T. L. Hicks
  11. Proc. Amer. Math. Soc. v.44 Fixed points by a new iteration method S. Ishikawa https://doi.org/10.2307/2039245
  12. Acta Sci. Math. (Szeged) v.67 Iterative approximation of fixed points for ф-hemicontractive operators in arbitrary Banach spaces Z. Liu;S. M. Kang
  13. Math. and Computer Modell v.34 Stability of Ishikawa iteration methods with erros for strong pseudo-contractions and nonlinear equations involving accretive operators in arbitrary real Banach spaces Z. Liu;S. M. Kang https://doi.org/10.1016/S0895-7177(01)00064-4
  14. J. Math. Anal. Appl. v.253 Convergence theorems for ф-strongly accretive and ф-hemicontractive operators Z. Liu;S. M. Kang https://doi.org/10.1006/jmaa.2000.6973
  15. Neural. Parallel & Sci. Comput. v.9 Convergence and stability of the Ishikawa iteration procedures with errors for nonlinear equations of the ф-strongly accretive type Z. Liu;S. M. Kang
  16. Proc. Amer. Math. Soc. v.4 Mean value methods in iteration W. R. Mann https://doi.org/10.2307/2032162
  17. J. Math. Anal. Appl. v.204 Stable iteration procedures for strong pseudocontractions and nonlinear operator equations of the accretive type M. O. Osilike https://doi.org/10.1006/jmaa.1996.0461
  18. Indian J. pure appl. Math. v.28 Stable iteration procedures for nonlinear pseudocontractive and accretive operator in arbitrary Banach spaces M. O. Osilike
  19. J. Math. Anal. Appl. v.227 Stability of the Mann and Ishikawa iteration procedures for ф-strongly pseudocontractions and nonlinear equations of the ф-strongly accretive type M. O. Osilike https://doi.org/10.1006/jmaa.1998.6075
  20. J. Korean Math. Soc. v.31 Mann iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces J. A. Park
  21. J. Math. Anal. Appl. v.56 Comments on two fixed point iteration methods B. E. Rhoades https://doi.org/10.1016/0022-247X(76)90038-X
  22. Applicable Anal. v.40 Iterative construction of fixed points of strictly pseudocontractive mappings J. Schu https://doi.org/10.1080/00036819108839994
  23. Proc. Amer. Math. Soc. v.113 no.3 Fixed point iteration for local strictly pseudo-contractive mapping X. Weng https://doi.org/10.2307/2048608
  24. J. Math. Anal. Appl. v.224 Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations Y. Xu https://doi.org/10.1006/jmaa.1998.5987

Cited by

  1. Implicit Mann Type Iteration Method Involving Strictly Hemicontractive Mappings in Banach Spaces vol.2012, 2012, https://doi.org/10.1155/2012/294718
  2. The equivalence between the convergences of Mann and Ishikawa iteration methods with errors for demicontinuousφ-strongly accretive operators in uniformly smooth Banach spaces vol.2006, 2006, https://doi.org/10.1155/IJMMS/2006/69542
  3. Weak $$w^{2}$$ w 2 -stability and data dependence of Mann iteration method in Hilbert spaces vol.113, pp.1, 2019, https://doi.org/10.1007/s13398-017-0447-y