• Title/Summary/Keyword: Manifolds

Search Result 930, Processing Time 0.018 seconds

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

HARMONIC AND BIHARMONIC MAPS ON DOUBLY TWISTED PRODUCT MANIFOLDS

  • Boulal, Abdelhamid;Djaa, Mustapha;Ouakkas, Seddik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.273-291
    • /
    • 2018
  • In this paper we investigate the geometry of doubly twisted product manifolds and we study the harmonicity and biharmonicity of maps between doubly twisted product Riemannian manifold. Also we characterize the conformal biharmonic maps and construct some new proper biharmonic maps.

SOME RESULTS ON PROJECTIVE CURVATURE TENSOR IN SASAKIAN MANIFOLDS

  • Gautam, Umesh Kumar;Haseeb, Abdul;Prasad, Rajendra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.881-896
    • /
    • 2019
  • In the present paper, we study certain curvature conditions satisfying by the projective curvature tensor in Sasakian manifolds with respect to the generalized-Tanaka-Webster connection. Finally, we give an example of a 3-dimensional Sasakian manifold with respect to the generalized-Tanaka-Webster connection.

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

  • Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1113-1129
    • /
    • 2019
  • We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.

SOME RECURRENT PROPERTIES OF LP-SASAKIAN NANIFOLDS

  • Venkatesha, Venkatesha;Somashekhara., P.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.793-801
    • /
    • 2019
  • The aim of the present paper is to study certain recurrent properties of LP-Sasakian manifolds. Here we first describe Ricci ${\eta}$-recurrent LP-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly ${\phi}$-recurrent LP-Sasakian manifolds and got interesting results.

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Zhao, Guangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1327-1340
    • /
    • 2019
  • We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

OPTIMIZATIONS ON TOTALLY REAL SUBMANIFOLDS OF LCS-MANIFOLDS USING CASORATI CURVATURES

  • Shahid, Mohammad Hasan;Siddiqui, Aliya Naaz
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.603-614
    • /
    • 2019
  • In the present paper, we derive two optimal inequalities for totally real submanifolds and C-totally real submanifolds of LCS-manifolds with respect to Levi-Civita connection and quarter symmetric metric connection by using T. Oprea's optimization method.

SEIBERG-WITTEN-LIKE EQUATIONS ON THE STRICTLY PSEUDOCONVEX CR-3 MANIFOLDS

  • Eker, Serhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1551-1567
    • /
    • 2019
  • In this paper, Seiberg-Witten-like equations are written down on 3-manifolds. Then, it has been proved that the $L^2$-solutions of these equations are trivial on ${\mathbb{R}}^3$. Finally, a global solution is obtained on the strictly pseudoconvex CR-3 manifolds for a given constant negative scalar curvature.

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.