Browse > Article
http://dx.doi.org/10.4134/JKMS.j180642

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION  

Chaubey, Sudhakar Kr (Section of Mathematics Department of Information Technology Shinas College of Technology)
Lee, Jae Won (Department of Mathematics Education and RINS Gyeongsang National University)
Yadav, Sunil Kr (Department of Mathematics Poornima College of Engineering)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.4, 2019 , pp. 1113-1129 More about this Journal
Abstract
We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.
Keywords
Riemannian manifolds; second order parallel tensors; Ricci solitons; symmetric spaces; semi-symmetric metric connection; different curvature tensors;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. Barua and A. Kr. Ray, Some properties of semisymmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 16 (1985), no. 7, 736-740.
2 C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
3 S. K. Chaubey and A. Kumar, Semi-symmetric metric T-connection in an almost contact metric manifold, Int. Math. Forum 5 (2010), no. 21-24, 1121-1129.
4 S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60.
5 S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26 (2012), no. 2, 269- 275.   DOI
6 S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc. 34 (2019), no. 1, 303-319.   DOI
7 S. K. Chaubey and S. K. Yadav, Study of Kenmotsu manifolds with semi-symmetric metric connection, Universal J. Math. Appl. 1 (2018), no. 2, 89-97.
8 M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi Einstein manifolds, Indian J. Pure Appl. Math. 43 (2012), no. 4, 359-369.   DOI
9 L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), no. 2, 297-306.   DOI
10 U. C. De and J. Sengupta, On a type of semi-symmetric metric connection on an almost contact metric manifold, Facta Univ. Ser. Math. Inform. 16 (2001), 87-96.
11 S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. (2018); https://doi.org/10.1007/s13370-018-0631-z.
12 A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen, Math. Z. 21 (1924), no. 1, 211-223.   DOI
13 R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
14 H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. (2) 34 (1932), no. 1, 27-50.   DOI
15 R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections in an almost contact manifold, Indian J. Pure Appl. Math. 9 (1978), no. 6, 570-580.
16 D. H. Jin, Half lightlike submanifolds of a semi-Riemannian space form with a semisymmetric non-metric connection, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 1, 39-50.
17 D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric metric connection, Quaest. Math. 37 (2014), no. 4, 485-505.   DOI
18 H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. of Math. (2) 27 (1925), no. 2, 91-98.   DOI
19 E. Pak, On the pseudo-Riemannian spaces, J. Korean Math. Soc. 6 (1969), 23-31.
20 C. Murathan and C. Ozgur, Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions, Proc. Est. Acad. Sci. 57 (2008), no. 4, 210-216.   DOI
21 G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103.
22 G. P. Pokhariyal, S. Yadav, and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differ. Geom. Dyn. Syst. 20 (2018), 138-158.
23 R. Sharma, Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci. 12 (1989), no. 4, 787-790.   DOI
24 R. Sharma, Second order parallel tensors on contact manifolds, Algebras Groups Geom. 7 (1990), no. 2, 145-152.
25 R. Sharma, Second order parallel tensors on contact manifolds. II, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 259-264.
26 R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), no. 1-2, 179-190.   DOI
27 K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
28 Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )${\cdot}$R = 0. II. Global versions, Geom. Dedicata 19 (1985), no. 1, 65-108.   DOI
29 L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.) 53 (1993), Commemoration Volume I, 140-148.
30 H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), no. 3-4, 384-411.   DOI
31 K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.   DOI
32 K. Yano and S. Bochner, Curvature and Betti Numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, NJ, 1953.
33 K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184.   DOI
34 F. Zengin, S. A. Demirbag, S. A. Uysal, and H. B. Yilmaz, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc. 38 (2012), no. 2, 479-490.
35 Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )${\cdot}$R = 0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531-582 (1983).